当前位置:文档之家› PWM逆变器Matlab仿真设计

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真1设计方案的选择与论证从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。

除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示:图1-1方案一:先升压再逆变图1-2方案二:先逆变,再升压方案选择:方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。

方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。

从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。

2逆变主电路设计2.1逆变电路原理及相关概念逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。

根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。

2.2逆变电路的方案论证及选择从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论:方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。

在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。

反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。

其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。

VD2图2-1 半桥逆变电路方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对交替各导通180o ,其输出矩形波的幅值是半桥电路的两倍。

全桥电路在带阻感负载时还可以采用移相调压的方式输出脉冲宽度可调的矩形波。

UdVD4图2-2全桥逆变电路方案三:带中心抽头变压器的逆变电路,其主要特点是交替驱动两个IGBT ,通过变压器耦合给负载加上矩形波电压。

两个二极管的作用也是给负载电感中储存的无功能量提供反馈通道,该电路虽然比全桥电路少了一半开关器件,但器件承受的电压约为2Ud ,比全桥电路高一倍,且必须有一个变压器。

V2图2-3带中心抽头变压器的逆变电路方案选择:全桥电路和带中心抽头变压器的逆变电路的电压利用率是一样的,均比半桥电路大一倍。

又由于全桥结构的控制方式比较灵活,所以本篇论文选择单相桥式逆变电路作为逆变器的主电路。

2.3建立单相桥式逆变电路的Simulink的仿真模型2.3.1模型假设1)所有开关器件都是理想开关器件,即通态压降为零,断态压降为无穷大,并认为各开关器件的换流过程在瞬间完成,不考虑死区时间。

2)所有的输入信号包括触发信号、电源电压稳定,不存在波动。

2.3.2利用MATLAB/Simulink进行电路仿真在Simulink工作空间中添加如下元件:Simscape/SimPower Systems /Power Electronics中的Diode、IGBT模块Simscape/SimPower Systems /Electrical Sources/DC Voltage Source模块Simscape/SimPower Systems /Elements/Series RLC Branch模块Simscape/SimPower Systems /Measurements/Current Measurement模块Simscape/SimPower Systems /Measurements/Multimeter模块Simscape/SimPower Systems /powergui模块Simulink/Source/Pulse Generator模块Simulink/Sinks/Floating Scope模块Simulink/Signal Routing/Demux模块利用上述模块构成如下图所示的单相桥式逆变电路模型图2-4单相桥式逆变电路模型各个模块的参数设置如下:“DC Voltage Source”模块幅值设为110V;“powergui”中“Simulation type”选为“continuous”,并且选中“Enable use of ideal switching device”复选框;“Pulse Generator3”中“Amplitude”设为1,由于题目要求输出电压频率为50Hz,即周期为0.02S,所以“Period”设为0.02,“Phase Delay”设为零,即初始相位为零,这一路脉冲送出去用来驱动桥臂1和3;“Pulse Generator1”的“Phase Delay”设为0.01,相当于延迟半个周期,以形成与“Pulse Generator3”互补的触发脉冲用来驱动桥臂2和4,其他参数与“Pulse Generator3”相同;“Solver”求解器算法设为ode45;仿真时间设为5S,之后便可以开始仿真了,仿真后Scope输出波形如下图所示,图中自上而下依次为负载的电压、电流、电源侧电流波形。

图2-5单相桥式逆变电路Scope输出波形从图中可以看出波形与理论上的波形形状相同,说明此逆变电路工作正常。

3正弦脉宽调制(SPWM)原理及控制方法的Simulink仿真3.1正弦脉冲宽度调制(SPWM)原理PWM脉宽调制技术就是对脉冲宽度进行调制的技术。

即通过对一系列脉冲宽度进行调制,来等效的获得所需要的波形(含幅值和形状)。

PWM的一条最基本的结论是:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时其效果基本相同,冲量即窄脉冲面积,这就是我们通常所说的“面积等效”原理。

因此将正弦半波分成N等分,每一份都用一个矩形脉冲按面积原理等效,令这些矩形脉冲的幅值相等,则其脉冲宽度将按正弦规律变化,这种脉冲宽度按正弦规律变化而和正弦波等效的PWM波形叫做SPWM。

示意图如下图所示:图3-1 SPWM示意图3.2 SPWM波的控制方法SPWM波的产生方法有计算法和调制法,计算法很繁琐,不易实现,所以在这里不作介u,把接受调制的信号作为载波绍,重点介绍调制法,即把希望输出的波形作为调制信号ru,通过信号波调制得到所期望的PWM波形。

通常采用等腰三角波作为载波,因为等腰三c角波上任一点的水平宽度和高度呈线性关系且左右对称,当它与任何一个缓慢变化的调制信号波相交时,如果在交点时刻对电路中的开关器件进行通断控制,就可得到SPWM波,常见的SPWM控制方法有单极性SPWM控制,双极性SPWM控制。

3.2.1双极性SPWM控制原理及Simulink仿真所谓的双极性是指在调制信号波的半个周波三角载波有正负两种极性变化。

用调制信号波与三角载波比较的方法可以产生双极性SPWM波,其仿真原理图如下图所示:图3-2 双极性SPWM信号仿真原理图其输出波形如下图所示:图3-3双极性SPWM信号仿真Scope输出波形图现用SPWM波产生模块驱动单相桥式逆变电路工作进行仿真,方法是在Simulink中选中SPWM产生电路,然后右键选择“Create Subsystem”将其放入到一个“Subsystem(子系统)”中,配置好其输入输出引脚,然后右击该模块,选择“Mask Subsystem”对其进行封装,封装后的模块名取为“PWM Subsystem”,原理图如下图所示:图3-4 双极性PWM逆变电路仿真模型电路中RLC皆取默认值,DC Voltage Source值取为110V,仿真后scope输出波形如下图所示:图3-5 双极性PWM逆变电路Scope输出波形3.2.2单极性SPWM控制原理及Simulink仿真所谓的单极性是指在调制信号波的半个周波三角载波有零、正或零、负一种极性变化,单极性型SPWM信号的产生比双极性复杂些,要按调制波每半个周期对调制波本身或者载波进行一次极性反转,其仿真原理图如下图所示:图3-6 单极性SPWM信号仿真原理图将该模块做封装后来驱动单相全桥逆变电路,为了使模型结构更加清晰,本次仿真采用Simulink库中自带的“Universal Bridge(通用桥)”代替由电力电子器件组合而成的桥式逆变电路,仿真模型如下图所示:图3-7单极性PWM逆变电路仿真模型在“Universal Bridge”模块的属性对话框中,令桥臂数为2即构成单相桥式逆变电路;在“DC Voltage Source”中将直流电压值设为110V;PWM发生器的调制度设为0.5,f,即可开始仿真,仿真后频率设为50Hz,载波频率设为基波频率的15倍,所以令=750cScope输出波形如下图所示:图3-8 单极性PWM逆变电路Scope输出波形4升压电路的分析论证及仿真前文提到过升压有两种方案,一是先进行升压再进行逆变,二是先进行逆变再进行升压,这一节主要讨论先通过Boost电路升压再进行逆变的方法。

4.1 Boost电路工作原理升压斩波电路如下图所示。

假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I1,同时C 的电压向负载供电,因C 值很大,输出电压uo 为恒值,记为Uo 。

设V 通的时间为on t ,此阶段L 上积蓄的能量为1on EI t 。

V 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为off t ,则此期间电感L 释放能量为01()off U E I t -,稳态时,一个周期T 中L 积蓄能量与释放能量相等,即101=(U -E)I on off EI t t (4-1)化简得:0=offT U E t (4-2)输出电压高于电源电压,故称升压斩波电路,也称之为Boost 变换器。

相关主题