当前位置:文档之家› 电流互感器变比的选择设计实例

电流互感器变比的选择设计实例

电流互感器变比的选择设计实例
我们将设计一个电流互感器。

使用电流互感器可以减小测量变换器原边电流时的损耗,比如大功率开关电源,由于电流过大所以需要使用电流互感线圈来监测电流以减少损耗。

电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难回答。

基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。

电流互感器的电压大小由负载决定。

我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。

假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。

当然,我们可以用一个1V/10A=100mΩ的电阻来测量,但是电阻将造成的损耗为1V×10A=10W,这么大的损耗对几乎所有的设计来说都是不能接受的。

所以,要选用电流互感器,如图1所示。

图1 用电流检测互感器减小损耗
当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,副边匝数应该比较多。

如果副边匝数为N,由欧姆定律可得(10/N)R=1V,在电阻中消耗的功率为P=(1V) /R。

我们假设消耗的功率为50mW(也就是说,我们可以使用100mW规格的电阻),这就要求R不得小于20Ω,如果采用20Ω的电阻,由欧姆定律可得副边匝数N=200。

现在我们来看磁芯,假设二极管是普通的一般的二极管,通态电压大约为1V,电流为10A/200=50mA。

互感器输出电压为1V,加上二极管的通态电压1V,总电压大约2V。

250kHz频率工作时,磁芯上的磁感应强度不会超过
其中4us为一个周期的时间,实际肯定是不到一个周期的。

由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。

因此Ae可以很小,而B也不会很大。

这个例子里磁芯的尺寸不能通过损耗要求或磁通饱和要求来确定,更大。

相关主题