实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用扫频仪观察静态工作点对单调谐放大器幅频特性的影响;4.用扫频仪观察集电极负载对单调谐放大器幅频特性的影响。
四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E是R E的旁路电容,C B、C C是输入、输出耦晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。
图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图22.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。
其基本部分与图1-1相同。
图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1Q02为射极跟随器,主要用于提高带负载能力。
五、实验步骤1.实验准备(1)插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K01。
(2)接通电源,此时电源指示灯亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
步骤如下:(1)1K02置“off“位,即断开集电极电阻1R3,调整1W01使1Q01的基极直流电压为2.5V左右,这样放大器工作于放大状态。
高频信号源输出连接到单调谐放大器的输入端(1P01)。
示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为200mv (示波器CH1监测)。
调整单调谐放大器的电容1C2,使放大器的输出为最大值(示波器CH2监测)。
此时回路谐振于6.3MHZ。
比较此时输入输出幅度大小,并算出放大倍数。
(2)按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-2。
表1-2(3)以横轴为频率,纵轴为电压幅值,按照表1-2,画出单调谐放大器的幅频特性曲线。
3.观察静态工作点对单调谐放大器幅频特性的影响。
顺时针调整1W01(此时1W01阻值增大),使1Q01基极直流电压为1.5V,从而改变静态工作点。
按照上述幅频特性的测量方法,测出幅频特性曲线。
逆时针调整1W01(此时1W01阻值减小),使1Q01基极直流电压为5V,重新测出幅频特性曲线。
可以发现:当1W01加大时,由于I CQ减小,幅频特性幅值会减小,同时曲线变“瘦”(带宽减小);而当1W01减小时,由于I CQ加大,幅频特性幅值会加大,同时曲线变“胖”(带宽加大)。
4.观察集电极负载对单调谐放大器幅频特性的影响当放大器工作于放大状态下,按照上述幅频特性的测量方法测出接通与不接通1R3的幅频特性曲线。
可以发现:当不接1R3时,集电极负载增大,幅频特性幅值加大,曲线变“瘦”,Q值增高,带宽减小。
而当接通1R3时,幅频特性幅值减小,曲线变“胖”,Q值降低,带宽加大。
六、实验报告要求1.对实验数据进行分析,说明静态工作点变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。
2.对实验数据进行分析,说明集电极负载变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。
3.总结由本实验所获得的体会。
实验2 幅度调制与解调(1)集成乘法器幅度调制电路—、实验准备1.做本实验时应具备的知识点:●幅度调制●用模拟乘法器实现幅度调制●MC1496四象限模拟相乘器二、实验目的1.通过实验了解振幅调制的工作原理。
2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。
3.掌握用示波器测量调幅系数的方法。
三、实验内容1.模拟相乘调幅器的输入失调电压调节。
2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。
3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。
4.用示波器观察调制信号为方波、三角波的调幅波。
四、基本原理所谓调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使其成为带有低频信息的调幅波。
目前由于集成电路的发展,集成模拟相乘器得到广泛的应用,为此本实验采用价格较低廉的MC1496集成模拟相乘器来实现调幅之功能。
1.MC1496简介MC1496是一种四象限模拟相乘器,其内部电路以及用作振幅调制器时的外部连接如图8-1所示。
由图可见,电路中采用了以反极性方式连接的两组差分对(T1~T4),且乘器。
其典型用法是:⑻、⑽脚间接一路输入(称为上输入v 1),⑴、⑷脚间接另一路输入(称为下输入v 2),⑹、⑿脚分别经由集电极电阻R c 接到正电源+12V 上,并从⑹、⑿脚间取输出v o 。
⑵、⑶脚间接负反馈电阻R t 。
⑸脚到地之间接电阻R B ,它决定了恒流源电流I 7、I 8的数值,典型值为6.8k Ω。
⒁脚接负电源-8V 。
⑺、⑼、⑾、⒀脚悬空不用。
由于两路输入v 1、v 2的极性皆可取正或负,因而称之为四象限模拟相乘器。
可以证明:122th 2co t T R v v v R v ⎛⎫=⋅ ⎪⎝⎭,因而,仅当上输入满足v 1≤V T (26mV)时,方有:12co t TR v v v R v =⋅,才是真正的模拟相乘器。
本实验即为此例。
图8-1 MC1496内部电路及外部连接2.MC1496组成的调幅器实验电路用1496组成的调幅器实验电路如图8-2所示。
图中,与图8-1相对应之处是:8R08对应于R T,8R09对应于R B,8R03、8R10对应于R C。
此外,8W01用来调节(1)、(4)端之间的平衡,8W02用来调节(8)、(10)端之间的平衡。
8K01开关控制(1)端是否接入直流电压,当8K01置“on”时,1496的(1)端接入直流电压,其输出为正常调幅波(AM),调整8W03电位器,可改变调幅波的调制度。
当8K01置“off”时,其输出为平衡调幅波(DSB)。
晶体管8Q01为随极跟随器,以提高调制器的带负载能力。
五、实验步骤1.实验准备(1)在实验箱主板上插上集成乘法器幅度调制电路模块。
接通实验箱上电源开关,按下模块上开关8K1,此时电源指标灯点亮。
(2)调制信号源:采用低频信号源中的函数发生器,其参数调节如下(示波器监测):∙频率范围:1kHz∙波形选择:正弦波∙输出峰-峰值:300mV(3)载波源:采用高频信号源:∙工作频率:2MHz用频率计测量;∙输出幅度(峰-峰值):200mV,用示波器观测。
2.输入失调电压的调整(交流馈通电压的调整)集成模拟相乘器在使用之前必须进行输入失调调零,也就是要进行交流馈通电压的调整,其目的是使相乘器调整为平衡状态。
因此在调整前必须将开关8K01置“off”(往下拨),以切断其直流电压。
交流馈通电压指的是相乘器的一个输入端加上信号电压,而另一个输入端不加信号时的输出电压,这个电压越小越好。
(1)载波输入端输入失调电压调节加信号。
用示波器监测相乘器输出端(8TP03)的输出波形,调节电位器8W02,使此时输出端(8TP03)的输出信号(称为调制输入端馈通误差)最小。
(2)调制输入端输入失调电压调节把载波源输出的载波信号加到载波输入端(8P01),而音频输入端不加信号。
用示波器监测相乘器输出端(8TP03)的输出波形。
调节电位器8W01使此时输出(8TP03)的输出信号(称为载波输入端馈通误差)最小。
图8-2 1496组成的调幅器实验电路93.DSB(抑制载波双边带调幅)波形观察在载波输入、音频输入端已进行输入失调电压调节(对应于8W02、8W01调节的基础上),可进行DSB的测量。
(1)DSB信号波形观察将高频信号源输出的载波接入载波输入端(8P01),低频调制信号接入音频输入端(8P02)。
示波器CH1接调制信号(可用带“钩”的探头接到8TP02上),示波器CH2接调幅输出端(8TP03),即可观察到调制信号及其对应的DSB信号波形。
其波形如图8-3所示,如果观察到的DSB波形不对称,应微调8W01电位器。
图8-3 图8-4(2)DSB信号反相点观察为了清楚地观察双边带信号过零点的反相,必须降低载波的频率。
本实验可将载波频率降低为100KHZ(需另配100KHZ的函数发生器),幅度仍为200mv。
调制信号仍为1KHZ(幅度300mv)。
增大示波器X轴扫描速率,仔细观察调制信号过零点时刻所对应的DSB信号,过零点时刻的波形应该反相,如图8-4所示。
(3)DSB信号波形与载波波形的相位比较在实验3(2)的基础上,将示波器CH1改接8TP01点,把调制器的输入载波波形与输出DSB波形的相位进行比较,可发现:在调制信号正半周期间,两者同相;在调制信号负半周期间,两者反相。
4.AM(常规调幅)波形测量(1)AM正常波形观测在保持输入失调电压调节的基础上,将开关8K01置“on”(往上拨),即转为正常调幅状态。
载波频率仍设置为2MHZ(幅度200mv),调制信号频率1KHZ(幅度300mv)。
示波器CH1接8TP02、CH2接8TP03,即可观察到正常的AM波形,如图8-5所示。
图8-5调整电位器8W03,可以改变调幅波的调制度。
在观察输出波形时,改变音频调制信号的频率及幅度,输出波形应随之变化。
(2)不对称调制度的AM波形观察在AM正常波形调整的基础上,改变8W02,可观察到调制度不对称的情形。
最后仍调制到调制度对称的情形。
(3)过调制时的AM波形观察在上述实验的基础上,即载波2MHZ(幅度200mv),音频调制信号1KHZ(幅度300mv),示波器CH1接8TP02、CH2接8TP03。