当前位置:文档之家› LPG气液分离器原理

LPG气液分离器原理

气液分离器的工作原理饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。

气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。

其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。

一般气体由上部出口,液相由下部收集。

汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。

基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。

QQ截图未命名.gif (93.74 KB)分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体.气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器,旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。

基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的.使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。

工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。

气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。

原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。

算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。

气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。

其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。

单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。

而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等气液分离是利用在制定条件下,气液的密度不同而造成的分离。

我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。

气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。

其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。

一般气体由上部出口,液相由下部收集。

化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开,还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵而液体经旋转,再次冷凝下降从下部排出利用气体与液体的密度不同。

从而将气体与液体进行隔离开来1、气液分离器有多种形式。

2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离。

3、也可利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。

4、目前蒸发前的闪蒸也可气液分离。

气液分离器采用的分离结构很多,其分离方法也有:1、重力沉降;2、折流分离;3、离心力分离;4、丝网分离;5、超滤分离;6、填料分离等。

但综合起来分离原理只有两种:一、利用组分质量(重量)不同对混合物进行分离(如分离方法1、2、3、6)。

气体与液体的密度不同,相同体积下气体的质量比液体的质量小。

二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。

液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。

一般是侧面进料,底部排出液体,底部排出气体,起到分离作用,里面可以装填料。

气液分离器的基本原理是利用气体和液体及固体不同的比重,饱和气进入分离器后液体固体瞬间失重与气体分离,并利用出口气的流速形成漩涡使比重大的液体和固体沉积到分离器下部,分离后的气体从分离器上部流出;带折流挡板和丝网除沫型的分离器是为了分离效果更好,后工序对气体要求更高的一种选用。

油气分离器的结构工作原理一、油气分离器的类型和工作要求1、分离器的类型1)重力分离型:常用的为卧式和立式重力分离器;2) 碰撞聚结型:丝网聚结、波纹板聚结分离器;3) 旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器;4) 旋转膨胀型:2、对分离器工作质量的要求1)气液界面大、滞留时间长;油气混合物接近相平衡状态。

2)具有良好的机械分离效果,气中少带液,液中少带气。

二、计量分离器1、结构:如图所示1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。

2)分离筒:储存油气混合物并使其分离的密闭圆筒。

3)量油玻璃管:通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。

4)加水漏斗与闸门:给分离器的水包加水用。

5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。

6)安全阀:保护分离器,防止压力过高破坏分离器。

7)分离伞:在分离筒的上部,由两层伞状盖子组成。

使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。

8)进油管:油气混合物的进口9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。

10)分离器隔板:在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。

11)排油管:是分离器中的油排出通道,其焊在分离器隔板中心处,并与分离器隔板以上相通。

12)支架:用来支撑分离器。

2、工作原理油气混合物经进油管线进入分离器后,喷洒在挡油帽上(散油帽),扩散后的油靠重力沿管壁下滑到分离器的下部,经排油管排出。

同时,气体因密度小而上升,经分离伞集中向上改变流动方向,将气体中的小油滴粘附在伞壁上,聚集后附壁而下,脱油后的气体经分离器顶部出气管进入管线进行测气。

三、玻璃管手动量油原理在分离器侧壁装一高压玻璃管和分离筒构成连通器,根据连通器原理,分离器内液柱压力与玻璃管内水柱压力相平衡,因此,当分离器内液柱上升到一定高度时,玻璃管内水柱也相应上升一定高度,但因液、水密度不同,分离器内液柱和玻璃管中的水柱上升高度也不相同。

只要知道玻璃管内水柱高度hw,就可以计算出分离器内液柱上升高度How,记录玻璃管内水柱上升高度所需时间t,则可计算出分离器内液柱重量,就可求出该井日产量。

四、玻璃管手动量油计算公式据连通器原理:Howρow g=hwρw g 即:Howρow=hwρw 则:How=hwρw / ρow若分离器在直径为D,则液柱重量为:WL= How ρow πD2/4= hwρw πD2/4若玻璃管水柱上升高度所需时间为t秒,则每秒液量为:q’m= WL/t = hwρw πD2/4t折算时间为t/秒时的产液量 (4小时=14400秒,8小时=28800秒):q= q/m t/= hwρw πD2 t//4t五、玻璃管手动量油操作示意图及操作步骤步骤:①先开分离器进口阀2;②再开单井计量阀3;③关单井来油阀4;④开气出口阀5;⑤关出口阀1。

六、玻璃管手动量油井间流程示意图及操作步骤操作步骤:①先开分离器进口阀;②再开单井计量阀;③关单井来油阀;七、玻璃管手动量油操作过程说明n1、量油的准备工作及倒换流程首先做好检查准备工作:纸、笔、秒表、玻璃管、量油上下线刻度及高度、分离器进出口阀门及液面高度情况等都是否正常,确认无误后开始倒流程;开分离器进口阀和单井量油阀,关闭单井来油阀,再开气出口阀(此时量油井的液量已开始进入分离器内),用量油出口阀的开关控制玻璃管内的液面,待玻璃管内液面略低于玻璃管量油下刻度线时,关闭出口阀门,开始量油。

2、记录量油时间等玻璃管内液面与下量油刻度线重合时记下量油起始时间T11,在液面上升过程中注意观察分离器压力表压力与计量间外输汇管压力表的压力(正常时两者压力值基本一致),直到液面上升至玻璃管量油上线时记录下时间T12,迅速打开量油出口阀(压液面),其他阀门流程不动;等玻璃管内液面降至下量油刻度线以下时,再次关闭量油出口阀,即重复上一次操作过程,记录下第二次量油时间T21与T22。

连续重复3-5次(次数以本油田量油管理规定为准),记录下T31与T32,…,T51,与T52,;如本次量油与测气同步,可直接进行测气,否则就要尽快恢复该井正常生产流程;最后把刚才记录的时间整理计算出本次量油的时间T,再与分离器量油常数换算出该井的当日产液量q1,具体计算方法如下:T=[(T12-T11)+(T22-T21)+(T32-T31)+(T42-T41)+(T52-T51)]/5 (s)q1=量油常数/T (m3/d)。

相关主题