纤维结晶度测量
DSC的前身是差热分析DTA
记录的是温差信号 峰面积没有热焓意义
DSC 曲线示例
DSC 信号
根据 DIN 定义的吸热与放热峰
结晶度计算
DSC /(mW/mg) 放热 0.7
PET
0.6 样品称重:17.45mg 升温速率:10k/min 气氛:N2 坩埚:Al 加盖扎孔 面积: -34.03 J/g 峰值: 149.2 ℃ 起始点: 137.6 ℃ 结晶度: 7.34 %
测试方法 采用图解分峰进行结晶度计算。计算公式如下:
式中,Xcw为 X射线衍射法测定的;Ic 为结晶衍射峰强 度;Ia 为非结晶弥散峰强度。 实验采用波长与聚合物晶格尺寸相近的靶,再进行计 算机分峰的数据处理,衍射数据经过空气散射校正,极 化因子校正,使用归一化因子归一化为电子单位,然后进 行康普顶校正,数据校正工作由计算机处理。将校正后 的衍射数据送入计算机进行分峰处理,计算机自动打印 出分峰的结果,即给出结晶度等值。
3)密度法 密度法测定高聚物结晶度的依据是:高分子链在晶 区中呈有序密堆砌 ,因而其密度高于无序非晶区 的密度 ,并假设试样的结晶度可按两相密度的线 性加和求得。用该方法测定的结晶度( Xcg )可根 据下式计算:
式中d, dc和da分别为试样、完全晶态及完全非晶 态的密度。
红外光谱法(IR) 原理:高聚物结晶时,会出现非晶态高聚物所没有的 新的红外吸收谱带--“晶带”,其强度随高聚物结晶 度的增加而增加,也会出现高聚物非晶态部分所特有 的红外吸收谱带--“非晶带”,其强度随高聚物结晶 度增加而减弱. 可见,测定晶带和非晶带的相对强度,便可以 确定其结晶度。
测试方法 • 由红外光谱法测得结晶度,通常表达式如下:
先选取某一吸收带作为结晶部分,分别为在聚合物 结晶部分吸收带处入射及透射光强度I,I0;ac为结 晶材料吸收率;p为样品整体密度;l为样品厚度。
THE END THANK YOU
纤维结晶度测量
目前测试材料结晶度的方法主要有四种: 1)差示扫描量热法(DSC); 2)广角X衍射法( WAXD); 3)密度法; 4)红外光谱法(IR)。
1)差示扫描量热法(DSC)
差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参 比物的功率差与温度关系的一种技术。 结晶聚合物熔融时会放热,DSC测定其结晶熔融时,得到的熔 融峰曲线和基线所包围的面积,可直接换算成热量。此热量是 聚合物中结晶部分的熔融热 。聚合物熔融热与其结晶度成正比, 结晶度越高,熔融热越大。
结晶度计算
样品是由两个明显不同的相构成 ,由于晶区的电子密度大于非晶区 ,相应地产生晶区衍射峰和非晶区弥散峰 ,通过分峰处理后 ,计算晶区衍射峰的强度占所有峰总强度的
2)广角X衍射法( WAXD)
原理:样品是由两个明显不同的相构成 由于晶区的电 子密度大于非晶区 ,相应地产生晶区衍射峰和非晶区弥 散峰 ,通过分峰处理后 ,计算晶区衍射峰的强度占所 有峰总强度的份数即为试样的结晶度,有时为了简化 , 也可直接用各峰的面积进行结晶度计算而不需对其进行 校正。
0.5
0.4
0.3
0.2 起始点: 75.1 ℃ 中点: 76.0 ℃ 比热变化*: 0.455 J/(g*K)
0.1
面积: 44.3 J/g 峰值: 259.9 ℃ 起始点: 242.8 ℃
0.0
-0.1 -50 0 50 100 温度 /℃ 150 200 250 300
结晶度计算
结晶度计算