当前位置:文档之家› 2015届高考理科数学解答题的八个大题模板

2015届高考理科数学解答题的八个大题模板

方达教育学科教师辅导教案学员姓名年 级高三辅导科目 数 学授课老师翟 嘉 课时数2h 第 次课授课日期及时段 2015年 月 日 : — :数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.模板1 三角变换与三角函数的性质问题已知函数f (x )=2cos x ·sin ⎝⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x +1.解答题的八个答题模板a ·1+cos C 2+c ·1+cos A 2=32b , 所以a +c +(a cos C +c cos A )=3b , 故a +c +⎝⎛⎭⎪⎫a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =3b ,整理,得a +c =2b ,故a ,b ,c 成等差数列.(2)解 cos B =a 2+c 2-b 22ac =a 2+c 2-⎝⎛⎭⎪⎫a +c 222ac=3a 2+c 2-2ac 8ac ≥6ac -2ac 8ac =12,因为0<B <π,所以0<B ≤π3.解 (1)由BA →·BC →=2得c ·a cos B =2.又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b2+2ac cos B .又b =3,所以a 2+c 2=9+2×6×13=13.解⎩⎨⎧ac =6,a 2+c 2=13,得⎩⎨⎧a =2,c =3或⎩⎨⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-132=223,由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C = 1-4292=79.于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327. 模板3 数列的通项、求和问题已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0. (1)令c n =a n b n,求数列{a n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .审题路线图 (1)a n b n +1-a n +1b n +2b n +1b n =0→a n +1b n +1-a nb n=2→c n +1-c n =2→c n =2n -1 (2)c n =2n -1→a n =2n -1·3n -1――→错位相减法得S n规 范 解 答 示 例构 建 答 题 模 板解 (1)因为a n b n +1-a n +1b n +2b n +1b n =0(b n ≠0,n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1, 于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.第一步 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式.第二步 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式. 第三步 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等). 第四步 写步骤:规范写出求和步骤. 第五步 再反思:反思回顾,查看关键点、易错点及解题规范.当n ≥2时,b n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时,b 1=1也适合此通项公式. ∴b n =2n -1 (n ∈N *). (2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+12n -1×2n +1=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+12×⎝ ⎛⎭⎪⎫12n -1-12n +1=12×⎝⎛⎭⎪⎫1-12n +1=n2n +1.由T n =n 2n +1>1 0012 012,得n >1 00110,∴满足T n >1 0012 012的最小正整数n 的值为101.模板4 利用空间向量求角问题(2014·山东)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点. (1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.审题路线图 (1)M 是AB 中点,四边形ABCD 是等腰梯形――→AB =2CDCD ∥AM CD =AM ⇒▱AMC 1D 1→C 1M ∥平面A 1ADD 1(2)CA ,CB ,CD 1两两垂直→建立空间直角坐标系,写各点坐标→求平面ABCD 的法向量→将所求两个平面所成的角转化为两个向量的夹角规 范 解 答 示 例构 建 答 题 模 板(1)证明 因为四边形ABCD 是等腰梯形, 且AB =2CD ,所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA . 连接AD 1,如图(1). 在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因为C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1. (2)解 方法一 如图(2),连接AC ,MC .由(1)知CD ∥AM 且CD =AM ,所以四边形AMCD 为平行四边形,可得BC =AD =MC ,由题意得∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB .以C 为坐标原点,建立如图(2)所示的空间直角坐标系C -xyz ,所以A (3,0,0),B (0,1,0),D 1(0,0,3),因此M ⎝ ⎛⎭⎪⎫32,12,0,所以MD 1→=⎝ ⎛⎭⎪⎫-32,-12,3,D 1C 1→=MB →=⎝ ⎛⎭⎪⎫-32,12,0. 设平面C 1D 1M 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得第一步 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线.第二步 写坐标:建立空间直角坐标系,写出特征点坐标.第三步 求向量:求直线的方向向量或平面的法向量.第四步 求夹角:计算向量的夹角.第五步 得结论:得到所求两个平面所成的角或直线和平面所成的角.由(*)式,得k 2>2m 2-2,又k ≠0,所以k 2=2-2m 24m 2-1>0.解得-1<m <-12或12<m <1.即所求m 的取值范围为⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1.已知双曲线x 2a 2-y 2b2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线的离心率e 的取值范围.解 设直线l 的方程为x a +y b=1,即bx +ay -ab =0.由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离d 1=b a -1a 2+b2, 同理可得点(-1,0)到直线l 的距离为d 2=b a +1a 2+b 2,于是s =d 1+d 2=2ab a 2+b 2=2abc. 由s ≥45c ,得2ab c ≥45c ,即5a c 2-a 2≥2c 2,可得5e 2-1≥2e 2,即4e 4-25e 2+25≤0,解得54≤e 2≤5.由于e >1,故所求e 的取值范围是⎣⎢⎡⎦⎥⎤52,5.模板6 解析几何中的探索性问题解(1)依题意,直线AB 的斜率存在,设直线AB 的方程为y =k (x +1),将y =k (x +1)代入x 2+3y 2=5,消去y 整理得(3k 2+1)x 2+6k 2x +3k 2-5=0.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧Δ=36k 4-43k 2+13k 2-5>0, ①x 1+x 2=-6k 23k 2+1. ②由线段AB 中点的横坐标是-12,得x 1+x 22=-3k 23k 2+1=-12,解得k =±33,适合①.所以直线AB 的方程为x -3y +1=0或x +3y +1=0. (2)假设在x 轴上存在点M (m,0),使MA →·MB →为常数.(ⅰ)当直线AB 与x 轴不垂直时,由(1)知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1. ③ 所以MA →·MB →=(x 1-m )(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2(x 1+1)(x 2+1)=(k 2+1)x 1x 2+(k 2-m )(x 1+x 2)+k 2+m 2. 将③代入,整理得MA →·MB → =6m -1k 2-53k 2+1+m 2=⎝⎛⎭⎪⎫2m -133k 2+1-2m -1433k 2+1+m 2=m 2+2m -13-6m +1433k 2+1.注意到MA →·MB →是与k 无关的常数,从而有6m +14=0,m =-73,此时MA →·MB →=49.(ⅱ)当直线AB 与x 轴垂直时,此时点A 、B 的坐标分别为⎝⎛⎭⎪⎫-1,23、⎝ ⎛⎭⎪⎫-1,-23,当m =-73时,也有MA →·MB →=49.综上,在x 轴上存在定点M ⎝ ⎛⎭⎪⎫-73,0,使MA →·MB →为常数.(2014·福建)已知双曲线E :x 2a2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x . (1)求双曲线E 的离心率.(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.解 (1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a =2,故c =5a ,从而双曲线E 的离心率e =ca= 5.(2)方法一 由(1)知,双曲线E 的方程为x 2a 2-y 24a 2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.解 (1)当a =1时,f (x )=2x x 2+1,f (2)=45,又f ′(x )=2x 2+1-2x ·2x x 2+12=2-2x 2x 2+12,f ′(2)=-625.所以,曲线y =f (x )在点(2,f (2))处的切线方程为y -45=-625(x -2),即6x +25y -32=0.(2)f ′(x )=2ax 2+1-2x 2ax -a 2+1x 2+12=-2x -a ax +1x 2+12.由于a ≠0,以下分两种情况讨论.①当a >0时,令f ′(x )=0,得到x 1=-1a,x 2=a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x(-∞,-1a)-1a(-1a,a )a(a ,+∞)f ′(x)-0 + 0 -f (x )极小值极大值所以f (x )在区间⎝ ⎛⎭⎪⎫-∞,-1a ,(a ,+∞)内为减函数,在区间⎝ ⎛⎭⎪⎫-1a ,a 内为增函数.函数f (x )在x 1=-1a 处取得极小值f ⎝ ⎛⎭⎪⎫-1a ,且f ⎝ ⎛⎭⎪⎫-1a =-a 2.函数f (x )在x 2=a 处取得极大值f (a ),且f (a )=1. ②当a <0时,令f ′(x )=0,得到x 1=a ,x 2=-1a,当x 变化时,f ′(x ),f (x )的变化情况如下表:x(-∞,a )a(a ,-1a)-1a(-1a,+∞)。

相关主题