1.通讯方式的设定:PPO 4,这种方式为0 PKW/6 PZD,输入输出都为6个PZD,(只需要在STEP7里设置,变频器不需要设置);PROFIBUS的通讯频率在变频器里也不需要设置,PLC方面默认为1.5MB.在P60=7设置下,设置P53=3,允许CBP(PROFIBUS)操作.P918.1设置变频器的PROFIBUS地址.2.设置第一与第二个输入的PZD为PLC给变频器的控制字,其余四个输入PZD这里没有用到.设置第一与第二个输出的PZD为变频器给PLC的状态字,设置第三个为变频器反馈给PLC 的实际输出频率的百分比值,第四个为变频器反馈给PLC的实际输出电流的百分比值,其余两个输出PZD这里没有用到.3.PLC给变频器的第一个PZD存储在变频器里的K3001字里.K3001有16位,从高到底为3115到3100(不是3001.15到3001.00).变频器的参数P554为1时变频器启动为0时停止,P571控制正转,P572控制反转.如果把P554设置等于3100,那么K3001的位3100就控制变频器的启动与停止,P571设置等于3101则3101就控制正转,P572设置等于3102则3102就控制反转.(变频器默认P571与P572都为1时正转,都为0时为停止).经过这些设置后K3001就是PLC给变频器的第一个控制字.此时K3001的3100到3115共16位除了位3110控制用途都不是固定的,所以当设置P554设置等于3101时则3101可以控制启动与停止,P571等于3111时则3111控制正转,等等.K3001的位3110固定为“控制请求”,这位必须为1变频器才能接受PLC的控制讯号,所以变频器里没有用一个参数对应到这个位,必须保证PLC发过来第一个字的BIT 10为1.这里设置为:P554=3100,P571=3101,P572=3102,当PLC发送W#16#0403时(既0000,0100,0000,0011)变频器正转.4.PLC给变频器的第二个PZD存储在变频器里的K3002字里.变频器的参数P443存放给定值.如果把参数P443设置等于K3002,那么整个字K3002就是PLC给变频器的主给定控制字. PLC发送过来的第二个字的大小为0到16384(十进制),(对应变频器输出的0到100%),当为8192时,变频器输出频率为25Hz.5.变频器的输出给PLC的第一个PZD字是P734.1,第二个PZD字是P734.2,等等.要想把PLC接收的第一个PZD用作第一个状态字,需要在变频器里把P734.1=0032(既字K0032),要想把PLC接收的第二个PZD用作第二个状态字,需要在变频器里把P734.2=0033(既字K0032).(K0032的BIT 1为1时表示变频器准备好,BIT 2表示变频器运行中,等等.)(变频器里存贮状态的字为K0032,K0033等字,而变频器发送给PLC的PZD是P734.1,P734.2等)在变频器里把P734.3=0148,在变频器里把P734.4=0022,则第三个和第四个变频器PZD分别包含实际输出频率的百分比值和实际输出电流的百分比值6.程序:(建立DB100,调用SFC14,SFC15,6SE7的地址为512既W#16#200)A. 读出数据CALL "DPRD_DAT"LADDR :=W#16#200RET_VAL:=MW200RECORD :=P#DB100.DBX0.0 BYTE 12(读取12个BYTE)NOP 0B. 发送数据CALL "DPWR_DAT"LADDR :=W#16#200RECORD :=P#DB100.DBX12.0 BYTE 12(写入12个BYTE)RET_VAL:=MW210NOP 0C. L "DB100".DBW0T "MW20"NOP 0D. L "DB100".DBW2T "MW22"NOP 0则:DB100.DBX 13.0 控制启动与停止;DB100.DBX 13.1 控制正转;DB100.DBX 13.2 控制反转;M21.1 变频器READY;M21.3 变频器FAULT.西门子控制字和状态字都是32位,实际上用的位数不多,控制字用到的有合闸、急停、运行允许、故障复位、点动、PLC控制等,状态字用到的有开机准备、运行准备、运行信号、故障、报警等。
这是比较简单的控制,如果要在线参数变更就比较复杂了。
最简单的学习方法就是看看PLC和变频器的接口配置,运行中用那些位有用,停止时那些位有用,启动和停止过程中那些位在变化,相信这样去学会比看大全理解的要快PLC与变频用DP通讯硬件组态1. 将MASTERDRIVES CBPCBP2 加入组态2. Profibus 地址1. 将MICROMASTER 4 加入组态2. Profibus 地址Top选择数据格式1. MASTERDRIVE中可供选择的PP0类型2. IQ address1. MICROMASTER 4 中可供选择的数据格式2. IQ addressTopStep 7 中的编程创建数据块DB1说明1.在Step7 中对PKW (参数区)读写参数时调用SFC14和SFC152. SFC14(“DPRD_DAT”)用于读Profibus 从站的数据3. SFC15(“DPWR_DAT”)用于将数据写入Profibus 从站4. W#16#100(即256)是硬件组态时PKW的起始地址Top程序举例11. 读参数r015注PKW ,IND 的详细说明见附录1. W#16#100(即256)是硬件组态时PKW的起始地址2 .将从站数据读入DB1.DBX0.0 开始的8个字节(P#DB1.DBX0.0 BYTE 8)PKE - DB1.DBW0IND - DB1.DBW2PWE1 - DB1.DBW4 参数值的高字位PWE2 - DB1.DBW6 参数值的低字位3 .将DB1.DBX28.0 开始的8个字节写入从站(P#DB1.DBX28.0 BYTE 8) DB1.DBW28 - PKEDB1.DBW30 - IND参数值的高字位DB1.DBW32 - PWE1参数值的低字位DB1.DBW34 - PWE2注PKW ,IND 的详细说明见附录更多内容下载请登陆: 电邮件:plc808@程序举例2 (读参数数组的数值)2. 读参数P401.2注PKW ,IND 的详细说明见附录1. W#16#100(即256)是硬件组态时PKW的起始地址2 .将从站数据读入DB1.DBX0.0 开始的8个字节(P#DB1.DBX0.0 BYTE 8) PKE - DB1.DBW0IND - DB1.DBW2PWE1 - DB1.DBW4 参数值的高字位PWE2 - DB1.DBW6 参数值的低字位3 . 将DB1.DBX28.0 开始的8个字节写入从站(P#DB1.DBX28.0 BYTE 8) DB1.DBW28 - PKEDB1.DBW30 - IND参数值的高字位DB1.DBW32 - PWE1参数值的低字位DB1.DBW34 - PWE2注PKW ,IND 的详细说明见附录Top程序举例3 (读须置位参数页的参数)3. 读参数U001.2注PKW ,IND 的详细说明见附录1. W#16#100(即256)是硬件组态时PKW的起始地址2 .将从站数据读入DB1.DBX0.0 开始的8个字节(P#DB1.DBX0.0 BYTE 8)PKE - DB1.DBW0IND - DB1.DBW2PWE1 - DB1.DBW4 参数值的高字位PWE2 - DB1.DBW6 参数值的低字位3 . 将DB1.DBX28.0 开始的8个字节写入从站(P#DB1.DBX28.0 BYTE 8) DB1.DBW28 - PKEDB1.DBW30 - IND参数值的高字位DB1.DBW32 - PWE1参数值的低字位DB1.DBW34 - PWE2注PKW ,IND 的详细说明见附录Top程序举例4(写参数)4. 写参数P401.1 (将W#16#1000 写入P401.1中)1.将W#16# 8191 写入DB1.DBW28 (PWE)注PKW ,IND 的详细说明见附录1. W#16#100(即256)是硬件组态时PKW的起始地址2 .将从站数据读入DB1.DBX0.0 开始的8个字节(P#DB1.DBX0.0 BYTE 8)PKE - DB1.DBW0IND - DB1.DBW2PWE1 - DB1.DBW4 参数值的高字位PWE2 - DB1.DBW6 参数值的低字位3 . 将DB1.DBX28.0 开始的8个字节写入从站(P#DB1.DBX28.0 BYTE 8) DB1.DBW28 - PKEDB1.DBW30 - IND参数值的高字位DB1.DBW32 - PWE1参数值的低字位DB1.DBW34 - PWE2注PKW ,IND 的详细说明见附录Top对PZD (过程数据)的读写说明1. 在Step7 中对PZD (过程数据)读写参数时调用SFC14和SFC152. SFC14(“DPRD_DAT”)用于读Profibus 从站的数据3. SFC15(“DPWR_DAT”)用于将数据写入Profibus 从站4. W#16#108(即264)是硬件组态时PZD的起始地址5. 对特殊结构的PZD 可用PQW , PIW 进行读写Top程序举例5 对PPO5 中10PZD的读写DB1中与PZD相对应的数据字1.在P918 中设置Profibus 地址,必须与Step 7 中设置相同.地址不能重复.2. 控制字第十位置“1”. PZD1 = W#16#X4XXprofibus-dp的数据通讯格式传动装置通过profibus-dp网与主站plc的接口是经过通讯模块cbp板来实现的,带有dp口的s7-300和400 plc也可以通过cpu上的dp口来实现。
采用rs485接口及支持(9.6k~12m)bps波特率数据传输(数据传输的结构如图1所示),其中数据的报文头尾主要是来规定数据的功能码、传输长度、奇偶校验、发送应答等内容,主从站之间的数据读写的过程(如图2所示)核心的部分是参数接口(简称pkw)和过程数据(简称pzd),pkw和pzd共有五种结构形式即:ppo1、ppo2、ppo3、ppo4、ppo5,其传输的字节长度及结构形式各不相同。
在plc和变频器通讯方式配置时要对ppo进行选择,每一种类型的结构形式如下。