当前位置:文档之家› 基于ADAMS与MATLAB联合仿真的倒立摆设计毕业论文

基于ADAMS与MATLAB联合仿真的倒立摆设计毕业论文

基于ADAMS与MATLAB联合仿真的倒立摆设计摘要:倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

倒立摆的控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

本文先分别用MATLAB和ADAMS两种软件对倒立摆系统进行建模仿真,然后将两者联合仿真,采用PID控制,用三种方法实现了对倒立摆系统的的控制。

仿真结果互相对比、补充,充分展现了各种仿真方法的特点,并直观的论证出利用两种软件进行联合仿真的优点和意义。

关键词:ADAMS;MA TLAB;倒立摆;联合仿真Design of inverted pendulum based on the co-simulationof ADAMS and MATLABAbstract: The control of inverted pendulum system is a nonlinear,complex, unstable,system, It’s an ideal experimental platform of control theory teaching and carrying out of various control experiments. Control methods of inverted pendulum are widely used in military, aerospace, robotics and general industrial fields, such as robot balance control in rocket launch, the verticality control and satellite flight attitude control. This paper first respectively by MATLAB and ADAMS for modeling and Simulation of the inverted pendulum system, and then combining the two for co-simulation.With the PID control, the control of inverted pendulum system are realized by three methods. The simulation results contrast and complement each other, fully demonstrated the characteristics of various simulation methods, and intuitive proves the advantages and significance of combined simulation using this two kinds of software.Key words: ADAMS,MATLAB,inverted pendulum, co-simulation目录第1章绪论 (1)1.1 课题研究背景与意义 (1)1.2 国内外发展现状 (1)1.3 本论文主要内容 (2)第2章倒立摆的数学模型及控制方法 (3)2.1 建模方法的选择 (3)2.2 倒立摆系统模型 (3)2.3 控制方法的选择 (6)2.4 PID算法简介 (6)本章小结 (8)第3章基于MATLAB的倒立摆控制系统设计 (10)3.1 MATLAB软件简介 (10)3.2 倒立摆系统开环稳定性分析 (11)3.3 摆杆角度PID控制 (12)3.4 小车位移PID控制 (13)3.5 Simulink模型构建 (14)3.6 系统闭环稳定性分析 (14)3.7 系统脉冲响应分析 (15)3.8系统阶跃响应分析 (17)本章小结 (19)第4章基于ADAMS的倒立摆控制系统设计 (20)4.1 ADAMS软件介绍 (20)4.1.1 ADAMS简介 (20)4.1.2 ADAMS软件组成 (20)4.2 ADAMS中倒立摆控制方案 (22)4.3 倒立摆ADAMS模型建立 (22)4.4 PID控制 (24)4.4.1 不加控制时系统仿真分析 (24)4.4.2 PID控制时系统仿真分析 (26)本章小结 (27)第5章基于MATLAB和ADAMS联合仿真的倒立摆控制系统设计 (29)5.1 ADAMS与MATLAB联合仿真意义 (29)5.2 ADAMS与MATLAB联合仿真过程 (29)5.2.1 建立ADAMS模型 (29)5.2.2 确定ADAMS的输入输出 (30)5.2.3 ADAMS与MATLAB的连接 (31)5.2.4 构建控制模型 (32)5.2.5 联合仿真 (34)本章小结 (35)总结 (36)致谢................................................... 错误!未定义书签。

参考文献 (37)第1章绪论1.1课题研究背景与意义倒立摆控制系统是一个不稳定的、复杂的、非线性系统, 主要是由导轨、小车和各级摆杆组成。

其在控制理论教学中有重要的作用,同时它也是开展各种控制实验的的理想实验平台。

非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等各种控制中的典型问题都可以通过对倒立摆系统的研究得到有效的反映。

通过对倒立摆的控制,可以用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

本课题在深入理解倒立摆基本原理的基础上,确立单级倒立摆控制为本文的研究课题。

单级倒立摆系统是一个典型多变量、不稳定和强耦合的非线性系统。

它的这些特性使得许多抽象的控制理论概念如系统稳定性、可控性等等,都可以通过单级倒立摆系统实验直观的表现出来。

而作为实验装置,它本身又具有成本低廉、结构简单、便于仿真、形象直观的特点。

因此,许多现在控制理论的研究人员一直将它视为典型的研究对象。

而在欧美发达国家的许多高等院校,也将它视为必备的控制理论教学实验设备。

所以,研究倒立摆系统对以后的教育研究领域和控制研究领域具有非常深远的影响。

ADAMS能够对各种机械系统进行建模、仿真和分析,建模直观、清晰,同时具有十分强大的运动学和动力学分析功能;MATLAB具有强大的计算功能,计算结果和程序设计的可视化也令它的使用更加的方便和广泛,是控制理论中使用最广泛的软件。

把ADAMS和MA TLAB联合起来仿真,可以将机械系统仿真分析同控制设计仿真有机地连接,将两种软件的优势结合起来。

本课题以实验室典型控制系统倒立摆为对象,对其进行机电机电一体化联合分析。

1.2国内外发展现状自倒立摆系统产生以来,国内外研究者就不断的进行着研究,也取得了很大的成果.上个世纪60年代,国外有学者提出了bang-bang的稳定控制。

在60年代后期,控制理论界提出了倒立摆的概念,受到世界各国许多科学家的重视。

从上世纪70年代初期开始,状态反馈理论对不同类型倒立摆的控制问题成了当时的一个研究热点。

上世纪80年代后期,将模糊理论应用于单级倒立摆的控制,取得了很大的成功。

从上世纪90年代开始,神经网络控制倒立摆的研究有了快速的发展。

另外,还有其他的控制方法用于倒立摆的控制。

利用云模型实现智能控制倒立摆。

利用云模型的方法,不用建立系统的数学模型,根据人的感觉、经验和逻辑判断,将人用语言值定性表达的控制经验,通过语言院子和云模型转换到语言控制规则器中,解决了倒立摆控制的非线性问题和不确定性问题。

遗传算法是美国密歇根大学Holland教授倡导发展起来的, 是仿真生物学中的自然遗传和达尔文进化理论而提出的并行随机优化算法。

1.3本论文主要内容设计要求:利用动力学仿真软件ADAMS搭建倒立摆的虚拟仿真系统,进行运动学及动力学仿真;通过ADAMS与MATLAB的接口模块ADAMS/control,利用MATLAB/Simulink模块搭建倒立摆的联合仿真控制系统,设计合适的参数,使满足性能指针要求;实现基于MATLAB与ADAMS的倒立摆的联合仿真。

要求倒立摆系统具有较好的动态响应特性。

在对设计要求的充分理解下,本文中完成了单级倒立摆的建模工作,包括数学建模和ADAMS软件建模,重点论述了用ADAMS建模的过程以及其和MATLAB联合仿真的具体步骤和过程。

本文将采用用三种方法实现对倒立摆的控制,首先在MATLAB中控制倒立摆,然后在ADAMS中建立倒立摆模型并实现初步控制,最后联合ADAMS与MATLAB,再次实现对倒立摆系统的控制。

通过这三种方法,可以很直观的体会到ADAMS与MATLAB联合仿真的优点。

第2章倒立摆的数学模型及控制方法2.1建模方法的选择系统建模的方法可以分为两种:机理建模和实验建模。

实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。

这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。

机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。

由于倒立摆系统本身是自不稳定的系统,实验建模存在一定的困难。

但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。

在本设计中采用牛顿-欧拉方法建立单级倒立摆系统的数学模型。

为了方便研究倒立摆系统的控制方法,建立一个比较精确的倒立摆系统的模型是必不可少的。

目前,人们对倒立摆系统建模一般采用两种方法:牛顿力学分析方法,欧拉—拉格朗日原理。

本文采用牛顿—欧拉方法建立直线型一级倒立摆系统的模型。

2.2倒立摆系统模型倒立摆系统由水平移动的小车及由其支撑的单节倒立摆构成。

控制输入为驱动力F(N),是由拖动小车的直流伺服电机提供的;被控制量是摆杆与垂直位置方向夹角θ(rad)和小车的位移1所示。

实际倒立摆系统的模型参数:M :小车的品质,1.096kg ;m :摆杆的品质,0.109kg ;b :小车的摩擦系数,0.1N /(m /sec );L :摆杆的中心到转轴的长度,0.25mJ :摆杆对重心的转动惯量,0.0034kg ⋅m 2;T :采样周期,0.005秒;对小车进行受力分析,图中P 和N 分别表示摆杆运动在水平方向和垂直方向上对小车的作用力(N),f v 是小车的摩擦力,等于xb 。

摆的运动由水平方向、铅直方向以及旋转方向的运动构成。

相关主题