随钻测井
Ⅰ水平井测井技术
XX井实钻轨迹图
Ⅰ水平井测井技术
XX井实钻轨迹图
Ⅰ水平井测井技术
GR:8in CNL:12in DEN:6in
径向平均
定向聚焦
Ⅰ水平井测井技术
泥岩—砂岩:
砂岩 泥岩
DEN GR CNL
泥岩
泥岩
砂岩
砂岩
DEN GR CNL
Ⅰ水平井测井技术
砂岩—泥岩:
泥岩
砂岩
泥岩
砂岩
砂岩
泥岩
砂岩
Ⅰ水平井测井技术
水平井井眼几何特性:
Ⅰ水平井测井技术
水 平 井 泥 浆 侵 入 清除钻屑 堆积 钻具研磨 坍塌 漏失 湍流清除
保持井壁稳定 重泥浆
Ⅰ水平井测井技术
螺纹井眼:
层 流 清 除
湍流清除 25°-65°
泥浆流动方向
前冲力
浮力 重力
浪状波纹 岩屑床
Ⅰ水平井测井技术
螺纹井眼:
角 度 固 定 最 大 主 应 力
补偿中子(%)
-14
井径(cm)
18 43 0.2
微球聚焦(Ωm)
200 1.2
补偿密度(g/cm3)
2.8
深 度 (m)
2110 2120 2130 2140 2150
自然电位(mv)
50 100 0.2
浅侧向(Ωm)Leabharlann 200 86补偿中子(%)
-14
井径(cm)
18 43 0.2
微球聚焦(Ωm)
200 1.2
50 100 0.2
浅侧向(Ωm)
200 86
补偿中子(%)
-14
深 度 (m)
1920
深侧向(Ωm)
0.2 200
浅侧向(Ωm)
0.2 200
井径(cm)
18 43 0.2
微球聚焦(Ωm)
200 1.2
补偿密度(g/cm3)
2.8
1930 1940 1950 1960
Ⅰ水平井测井技术
自然伽马(API)
Ⅰ水平井测井技术
水平井射孔:
单一砂层的水平井,水平段内射孔校深的精度要求 不是很高,但根据储层精细评价结果,对孔眼的方 位及孔密要求相对比较严格。
Ⅰ水平井测井技术
流体监测:
磁定位 自然伽马 井 温 流 量 持 水 压 力 密 度
三参数 五参数 七参数
Ⅰ水平井测井技术
定 向 井 流 动 状 态
Ⅰ水平井测井技术
随钻测井
常规浅侧向(Ωm) 常规自然伽马(API)
常规深侧向(Ωm) 常规自然伽马(API)
50 100 0.2 0.2 200
0.2
200
常规浅侧向(Ωm)
200
深 度 (m)
1880 1890 1900 1910 1920 1930 1940
随钻深侧向(Ωm) 随钻自然伽马(API)
60 160 0.2 0.2 200
Ⅰ水平井测井技术
重力牵引作用减弱 机械方面 测 井 难 题 测量方面 流体的流动相态 解释方面 各向异性 解决油藏问题 仪器不能通过井眼 地层不对称
Ⅰ水平井测井技术
所有常规仪器 测 井 输 送 方 式 挠性管输送 保护蓝式钻杆输送 湿接头式钻杆输送 适合各类井型 随时循环泥浆 不存在对接失败 能保证仪器安全
2∼6°/30m ∼ °
6∼30°/30m ∼ °
5∼10°/ ∼ ° m
长半径水平井
中半径水平井
短半径水平井
Ⅰ水平井测井技术
M-11井:BP公司于英国南部Wytch Farm开发区, 垂直井深1605米,水平位移10114米,97年5月 开钻,98年1月完井。随钻测井、随钻测量、地 质导向、电缆测井。
三维水平井
成对水平井
常规水平井
分枝水平井
侧钻井水平井
连通水平井 A AA B BB
H0.7
Ⅰ水平井测井技术
多目标勘探与评价:
Ⅰ水平井测井技术
增加泄油面积:
Ⅰ水平井测井技术
克服地面条件限制:
Ⅰ水平井测井技术
改善油藏开发效果
提高经济效益
$
$$$$
Ⅰ水平井测井技术
设 计 井 位 示 意
Ⅰ水平井测井技术
测井仪器
Ⅰ水平井测井技术
建 立 三 相 流 动 实 验 室
Ⅰ水平井测井技术
阵列测井仪:
Ⅰ水平井测井技术
水平井、定向井、垂直井
随钻测量 技 术 进 步 改善仪器 建立新模型
裸眼井、套管侧钻井 没有钻进时间、存储空间的限制 高分辨率阵列测井仪 方位聚焦 测井地质学 岩石地球物理
随钻测井
三十 年代 提出 随钻 测井 的设 想 七十年代 商业使用 随钻成像仪
补偿密度(g/cm3)
2.8
Ⅰ水平井测井技术
深度校正:
在直井中井眼与地层接近正交, 在直井中井眼与地层接近正交,曲线的半 幅点对应于地层界面, 幅点对应于地层界面,利用基准曲线法和校深 曲线法基本能实现所有曲线在深度上对齐。 曲线法基本能实现所有曲线在深度上对齐。 在水平井中井眼与地层的交角很小, 在水平井中井眼与地层的交角很小,曲线 的半幅点不一定都对应地层的界面, 的半幅点不一定都对应地层的界面,传统的校 深方法受到挑战。 深方法受到挑战。 使用校深曲线法进行校深时, 使用校深曲线法进行校深时,要保证校深 测井仪器两次测量时的运行轨迹尽量一致。 测井仪器两次测量时的运行轨迹尽量一致。
通过“八五”技术攻关,我国的水平 井技术取得了长足的进步,形成了水平 井设计、钻井、测井、完井、射孔、采 油、动态监测等一系列配套应用技术。 目前国内外完钻的水平井五花八门, 各有千秋,其主要目的和应用大致可分 为:
阶梯式水平井
多靶点水平井
水 平 井 类 型
1380 1390 垂 深 m 1400 1410 1420 0 100 200 300 400 500 600 水平段 m “拱”型水平井
Ⅰ水平井测井技术
水平井测井响应:
Ⅰ水平井测井技术
水平井测井响应:
在垂直井中, 在垂直井中,仪器的测量值主要是仪器所 在地层贡献;在水平井中, 在地层贡献;在水平井中,仪器的测量值常常 是仪器所在地层和围岩特性参数的加权平均。 是仪器所在地层和围岩特性参数的加权平均。 在极端情况下贴井壁测量仪器两个极板测 量值可能差异很大。 量值可能差异很大。 仪器响应受径向不对称性和各向异性的影 响程度取决于它们各自的探测深度。 响程度取决于它们各自的探测深度。探测深度 越深,影响程度就越严重。 越深,影响程度就越严重。
0
100 0.2
常规深侧向(Ωm)
200
深 度 (m)
1910
随钻深侧向(Ωm) 随钻自然伽马(API)
0 100 0.2 0.2 200
随钻浅侧向(Ωm)
200
随钻浅侧向(Ωm)
200
1920 1930 1940 1950 1960
随钻测井
★旋转导向技术 PowerDrive:定向井, 水平井, PowerDrive:定向井, 水平井, 大位移井 PowerV: PowerV:全自动化垂直钻井 ★ GeoSteering 近钻头地质导向技术
随钻测井
邻井测井数据
随钻测井数据
地震数据
地质模型
随钻测井
设计井眼 轨迹和实 钻井眼轨 迹的差异
随钻测井
钻压 扭矩 泵压 排量 钻时 岩屑 转速 井斜 方位 自然伽马 电阻率 地面 系统
实时分析
现场 工程师
优 质 工 程
实时解释
随钻测井
NaviGamma
可靠的MWD实时导向控制 可靠的MWD实时导向控制 MWD 涡轮发电机供电 测量数据交会进行界面确定 近钻头导向 井眼定位 泥浆脉冲传输/ 泥浆脉冲传输/井下存储 适用钻具: 适用钻具: 4¾"-9½" " "
滑动方式 转动方式
Ⅰ水平井测井技术
水平井侵入特性:
垂直井
水平井
Ⅰ水平井测井技术
双感应、球型聚焦 仪 器 探 测 特 性 定向聚焦型 径向平均型 双侧向 补偿中子 自然伽马 密度 微球型聚焦 地层倾角
Ⅰ水平井测井技术
双感应测井仪器探测深度较深, 双感应测井仪器探测深度较深,常用于确定水平 井井眼与地层界面的距离, 井井眼与地层界面的距离,当中感应探测到地层 界面信息时,曲线才有反映。 界面信息时,曲线才有反映。但此时无法确定井 眼到底是临近地层的上界面还是下界面。 眼到底是临近地层的上界面还是下界面。
水平井测井技术与随钻测井
中国石油天然气股份有限公司
勘探与生产工程监督中心
Ⅰ水平井测井技术
水平井在上个世纪二、三十年代最 早出现在美国,八十年代中期因油价影 响被油公司高度关注并取得革命性发展。 我国的水平井技术始于1965年在四 川钻探的磨3井,受当时技术条件的限制, 未达到预期的设计效果。
Ⅰ水平井测井技术
LWD_GR(API)
0 150
PD_LWD(Ωm) 深 度 (m)
1950 0.3 30 0.3
AT_LWD(Ωm)
30
GR(API)
0 150
RILD(Ωm)
0.3 30 0.3
RILM(Ωm)
30
2000 2050 2050 2100 2150 2200 2250 2300 2350 2400 2450
涡轮发电机 井斜 方位
自然伽马 工具面、温度
随钻测井
★四个补偿功能的双频发射线圈、 四个补偿功能的双频发射线圈、 四个补偿功能的双频发射线圈 两个接收线圈; 两个接收线圈; 个探测深度、32个测量数值 ★8个探测深度、32个测量数值 2MHz高垂直分辩率 高垂直分辩率, ★2MHz高垂直分辩率,区分薄层和 油水界面 400MHz横向探测范围大 横向探测范围大( ★400MHz横向探测范围大(原状地 ),地质导向 地质导向, 层),地质导向,早期地层边界 探测和油水界面确定 适用造斜率30 30° ★适用造斜率30°/100ft