培优十速度关联类问题求解1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ)5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少?6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?7、如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图所示.已知重力加速度为g,试求:(1)m2在下滑过程中的最大速度(2)m2沿竖直杆能够向下滑动的最大距离9、如图所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?10、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.11、一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定在O点,它们处在方向水平向右电场强度大小为E的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P1等高的P2点时的速度的大小为多少?12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是?13、质点绕半径为R=1m的圆轨道运动,其速率v和时间t满足v=πt的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.14、如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动.碗和杆的质量关系为:m B=2m A.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A,A、B便开始运动.设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A与B速度的大小(表示成θ的函数).难点5 速度关联类问题求解·速度的合成与分解一、分运动与合运动的关系1、一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性2、合运动与分运动同时开始、进行、同时结束,即:同时性3、合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性二、处理速度分解的思路1、选取合适的连结点(该点必须能明显地体现出参与了某个分运动)2、确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变3、确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向4、作出速度分解的示意图,寻找速度关系典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度.要顺利解决这类题型,需要搞清两个问题: (1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动. (2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算. 其实这也可以理解成“根据实际效果将合运动正交分解”的思路.1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD① 由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ② 人拉绳子的速度v =t BDt s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v物是合速度,将v物按如图所示进行分解其中:v=v物cosθ,使绳子收缩v⊥=v物sinθ,使绳子绕定滑轮上的A点转动v所以v物=θcos解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=θcos2.(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是( ).A.橡皮的速度大小为2vB.橡皮的速度大小为3vC.橡皮的速度与水平方向成60°角D.橡皮的速度与水平方向成45°角解析钉子沿斜面匀速运动,橡皮具有向上的分速度v,同时具有沿斜面方向的分速度v,根据运动的合成可知,橡皮的速度大小为3v,速度与水平方向成60°角,选项B、C正确.答案BC2、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BB ’,如图所示. 过B ’点作B ’E ⊥BD .当Δt →0时,∠BDB ’极小,在△BDB ’中,可以认为DE =B ’D . 在Δt 时间内,人拉绳子的长度为Δs 2=BB ’+BE ,即为在Δt 时间内绳子收缩的长度.由图可知:BE =θcos 'BB ①由速度的定义:物体移动的速度为v 物=tBB t s ∆∆∆'=1 ②人拉绳子的速度v 0=tBB t BE BB t s ∆∆∆∆)cos +1('=+'=2α ③ 由①②③解之:v 物=θcos +10v解法二:应用合运动与分运动的关系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v 物.根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动.也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD 绳上的速度只是一个分速度,所以上侧绳缩短的速度是v 物cos a因此绳子上总的速度为v 物+v 物cos =v 0,得到v 物=θcos +10v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功设该时刻人对绳子的拉力为F ,则人对绳子做功的功率为P 1=Fv .绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为分为2部分,BD 绳对物体做功的功率为P 2=Fv 0cos,BC 绳对物体做功的功率为P 2’=Fv 0由P 1=P 2+P 2’得到v 物=θcos +10v3、一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ)解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显)因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ设此时OB 长度为a ,则a =h /sin θ令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h 故A 的线速度v A =ωL =vL sin 2θ/h4、如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 解析:右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v . 将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos由于定滑轮上绳子的速度都是相同的,得到AB v v αβcos cos =5、如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?解析:已知地面上的人是以恒定速度拉动小球的,则人做的功其实就等于平台上的物体动能的增加量. 关键是要求出如图状态下物体的速度v .根据定滑轮的特性,可以知道物体m 的速度和绳子的速度是相同的.对小球进行分析,小球水平方向做v 0的匀速运动是合运动,v 0是合速度,是沿着绳子方向的速度与垂直于绳子方向的速度的合.因此v 0cos45°=v ,得到022=v v 2020241=21•21=21==mv v m mv E W k6、如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小 解析:分别对小球A 和B 的速度进行分解,设杆上的速度为v则对A 球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度.v =v A cos对B 球进行速度分解,得到v =v B sin联立得到v A =v B tan加速度也是同样的思路,得到a A =a B tan7、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m .物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度 (2)m 2沿竖直杆能够向下滑动的最大距离解析:(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有:T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s,(2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′即:m 1g (AB AB H -+22)sin30°=m 2gH 利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m8、如图所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大?解析:由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°选取光点S ′为连结点,因为光点S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL9、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功. 解析:以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H10、一带正电的小球,系于长为L 的不可伸长的轻线一端,线的另一端固定在O 点,它们处在方向水平向右电场强度大小为E 的匀强电场中.已知电场对小球的作用力大小等于小球的重力.现把小球拉到图中的P 1处,使线绷直,并与电场方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零,水平分量没有变化,则小与球到达P 1等高的P 2点时的速度的大小为多少? 解析:已知qE=mg ,则小球从释放到经过最低点的过程中,做速度为零的匀加速直线运动. 根据动能定理0-21=+2Q mv qEL mgLgL v Q 2=又已知小球在经过最低点的瞬间,因受线的拉力作用,速度的竖直分量突变为零. 将小球过最低点时的速度沿竖直向下与水平向右分解,则突变后的速度为gL v Q 2='再列动能定理2'2t 21-21=+-Q mv mv qEL mgL 得到gL v t 2=12、某人游水过河,他在静水中的速度是河水流速的1/2,为使他到达对岸的地点与正对岸距离最短,他的游泳方向是? 解析:因为人的速度小于水的速度,那么合速度就不可能垂直于河岸了. 设v 合与河岸夹角为β 那么过河的位移s =v 合tt =v /v sin β整理下得到s =d /sin β则要得到s 最短,必须β最大.同样,以v 人为半径,v 水的端点为圆心画圆.只有当v 人垂直于v 合的时候,β最大. sin β=v 人/v 水=1/2 得到s =d /sin β=2d13.质点绕半径为R=1m 的圆轨道运动,其速率v 和时间t 满足v =πt 的关系.求质点绕圆周运动一周回到出发点时,它的加速度的大小和方向.解:质点绕圆周一周所走过的路程为L=2πR ① 由v =πt 可知其切向加速度大小为a τ=π(m/s 2) ∴ 21=L a τ·t 2 ② 联立①、②可得 t =2(s) 此时 v =a τt =2π(m/s 2)向心加速度 )/(4222s m Rv a n π== )/(1611624222s m a a a n ππππτ+=+=+=总设与速度方向夹角为φ,tan φ=4π φ=85.5°如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上.A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动.碗和杆的质量关系为:m B =2m A .初始时,A 杆被握住,使其下端正好与碗的半球面的上边缘接触(如图).然后从静止开始释放A ,A 、B 便开始运动.设A 杆的位置用θ 表示,θ 为碗面的球心O 至A 杆下端与球面接触点的连线方向和竖直方向之间的夹角.求A 与B速度的大小(表示成θ 的函数).、由题设条件知,若从地面参考系观测,则任何时刻,A 沿竖直方向运动,设其速度为v A ,B 沿水平方向运动,设其速度为v B .若以B 为参考系,从B 观测,则A 杆保持在竖直方向,它与碗的接触点在碗面内作半径为R 的圆周运动,速度的方向与圆周相切,设其速度为V A .杆相对地面的速度是杆相对碗的速度与碗相对地面的速度的合速度,速度合成的矢量图如图中的平行四边形所示.由图得A V v =θsin A (1)B A cos v =θV(2)因而θcot A B v v =(3)由能量守恒2BB 2A A A 2121cos v v m m gR m +=θ (4)由(3)、(4) 两式及A B 2m m =得θθθ2A cos 1cos 2sin +=gR v (5)θθθ2B cos 1cos 2cos +=gR v(6)。