当前位置:
文档之家› 几种常见铸钢件缺陷的补焊方法和经验
几种常见铸钢件缺陷的补焊方法和经验
无损检测
对于阀门铸件的“重缺陷”和“重要补焊”,ASTMA217A217M-2007标准中规定,如铸件生产符合S4(磁粉检查)补充要求的规定,补焊要采用检查铸件同一质量标准的磁粉检验来检查。如铸件生产符合S5(射线照相检查)补充要求的规定,对于水压试验渗漏的铸件、或准备补焊的任何凹坑深度超过壁厚的20%或1in1(25mm)的铸件以及准备补焊的任何凹坑面积约大于10in2(65cm2)的铸件的补焊,都要采用检查铸件同一标准的射线检验进行检查。JB/T5263-2005标准中规定,重缺陷补焊后应进行射线或超声检测。即对于重缺陷和重要补焊,必须要进行有效的无损检查,证明合格后方能使用。
1、缺陷处理
缺陷剔除
在工厂里一般可采用碳弧气刨吹去铸造缺陷,然后用手提角磨机打磨缺陷部位至露出金属光泽。但生产实践中更多的是直接用碳钢焊条大电流除去缺陷,并用角磨机磨出金属光泽。一般铸件缺陷剔除,可用<4mm-J422焊条,160~180A电流,将缺陷除干净,角磨机将缺陷口打磨成U形,减少施焊应力。缺陷清除的彻底,补焊质量好。
消除应力
精加工后发现的缺陷补焊后,已无法做整体消除应力回火处理,一般可采用缺陷部位氧-乙炔火焰局部加热回火方法。采用大号割炬中性火焰来回缓慢摆动,将铸件加热到表面出现目视可见暗红色(约740℃),保温(2min/mm,但不少于30min)。消除应力处理后应立即在缺陷处盖上石棉板。珠光体钢阀门通径上的缺陷,补焊时还应在通径内腔填塞石棉板,使之缓冷。此种操作,既简便又经济,但要求焊工有一定实践经验。
焊条处理
补焊前,应首先检查焊条是否预热,一般焊条应经150~250℃烘干1h。预热后的焊条应置保温箱中,做到随用随取。焊条反复预热3次,若焊条表面药皮有脱落、开裂和生锈,应不予使用。
补焊次数
承压铸件,如阀门壳体经试压渗水,同一部位一般只允许补焊一次,不能重复补焊,因为多次补焊会使钢中晶粒粗大,影响铸件的承压性能,除非铸件可以在焊后重新进行热处理。其他非承压同一部位的补焊,一般规定补焊不超过3次。同一部位的补焊超过二次的碳钢铸件,焊后应作消除应力处理。
缺陷判断
在生产实践中,有些铸件缺陷不允许补焊,如贯穿性裂纹、穿透性缺陷(穿底)、蜂窝状气孔、无法清除的夹砂夹渣和面积超过65cm2的缩松等,以及双方合同中约定的其他不能补焊的重大缺陷。在补焊前应判断缺陷的类型。
缺陷部位预热
碳素钢和奥氏体不锈钢铸件,凡补焊部位的面积<65cm2,深度<铸件厚度的20%或25mm,一般无需预热。但ZG15Cr1Mo1V、ZGCr5Mo等珠光体钢铸件,由于钢的淬硬倾向大,冷焊易裂,应作预热处理,预热温度为200~400℃(用不锈钢焊条补焊,温度取小值),保温时间应不少于60min。如铸件不能整体预热,可用氧-乙炔在缺陷部位并扩展20mm后加热至300-350℃(背暗处目测观察微暗红色),大号割炬中性焰枪先在缺陷处及周边做圆周快速摆动几分钟,然后改为缓慢移动保持10min(视缺陷厚度而定),使缺陷部位充分预热后,迅速补焊。
在工业管线的承压阀门中,铸钢阀门由于其成本的经济性和设计的灵活性,受到广泛运用。但是缺陷判别和制订合理、经济、实用及可靠的补焊工艺来确保补焊后的阀门符合质量要求已成为阀门冷热加工共同关注的问题。
文章来源:密封技术网/
单件小批量铸钢件检验
单件小批量铸钢件多为不定型单件生产,没有铸造工艺验证环节,而铸造工艺的合理编制,实践经验是很重要的依据。加之铸钢其含碳量低(C≤0。23%),浇注温度高(可达1560吧),因此在砂型铸造生产中铸钢件或多或少地存在一些铸造缺陷。技术、检测能力强、传奇私服发布网生产条件好的企业铸造质量能够得到自行控制,但差一些的企业生产铸钢件的质量就需要我们在检验中特别注意。1典型缺陷目视特征和主要形成原因单件小批量铸钢件常见的缺陷有:裂纹、气孔、夹砂、夹杂、缩孔、疏松、内冷铁未熔合、泥芯撑未熔合等。1,热裂纹裂缝为不规则曲线,内表面比较粗糙且呈氧化铁黑褐色。冷裂纹:裂纹线条较直、裂缝内表面洁净且呈金属光泽。产生的原因属于钢水在凝固过程中铸件的收缩应力造成。铸钢件根部上表面打磨后内部热裂纹目视特征为夹砂引起的热裂纹,产生的原因为合箱时型砂掉人型腔而未清除,浮砂所致。铸钢件筋板连接根部热裂纹,产生的原因为铸件凝固收缩时受型砂的阻力所致。铸钢件表面龟裂,其目视特征为裂纹分布如龟壳花纹。产生的原因主要是开箱过早、快冷所致。铸造工艺拉筋与工件交接处易产生热裂纹主要为工艺拉筋尺寸不当或者开箱过早所致。2.气孔、缩孔铸钢件轴毂上表面气孔缺陷目视特征呈圆形、内壁光滑有氧化色。产生的原因很多,此件产品为浇注系统中的金属液流裹携着气泡进入型腔所致。铸钢件底部缩孔其目视特征为形状不规则且内表面呈氧化铁黑褐色的空洞。产生的原因主要是浇注时钢水液面高度不够,或者是浇注速度过快所致。3.夹渣、砂眼铸钢件加工后上表面夹渣缺陷,其目视特征为低熔点的氧化夹杂物和玻璃状的硅酸盐夹杂物。主要形成原因为底注式浇包浇注过程中,包内钢水中的非金属夹杂未来得及上浮或者是浇注系统卷人产生二次夹杂进入铸型,铸件凝固过程中夹杂物上浮至铸件上表面所致。铸钢件上表面砂眼缺陷其目视特征为缺陷中存在小团状未熔型砂。主要形成原因为型腔未清理干净浇注系统中带人型砂或者铸型缺实度不均匀浇注过程中钢水冲刷型腔所致。4.铸造应力未消除、冷隔、预热不当ABS检验中铸钢件跌落试验断裂情况,其目视特征为脆性断口。主要形成原因为热处理时铸件放置位置不合理,热处理温度未达到要求或者保温时间不够或者受热不均匀使其铸态组织未能完全消除,存在残余铸造内应力。铸钢件过渡部位冷隔,其目视特征为“裂纹”状缝隙,但缝隙带有圆角的棱边。主要形成原因为钢水冲型时由于型腔温度低或者浇注温度低,流在前面的钢水液冷却快,两股液流流头汇合处产生了固相壳堵塞。预热不当产生的裂纹,其目视特征属于冷裂纹产生于铸造缺陷焊补时预热不均匀、预热方法不当所致。2铸钢件产品质量检验与控制依据日本JCSS铸钢件检查标准制定的思考方法,铸钢件受弯曲应力的支配,其高应力的部位都在外表面和近表面,而不是在材料厚度的中间部位。因此,检验中除了铸钢件的材料应符合规范要求外,对表面和近表面的缺陷应特别注意。
等级评定
对于补焊区域无损检查缺陷报告的等级,JB/T3595-2002中规定,对于电站阀的铸钢件阀门坡口和补焊部位应按GB/T5677-1985进行评定,三级合格。阀门对接焊缝应按GB/T3323-1987进行评定,二级合格。JB/T644-2008中对铸件中同时存在二种不同等级缺陷也给出了明确规定,在评定区同时存在两类或两类以上且等级不同的缺陷时,取其中最低等级定为综合评定等级。同时存在两类或两类以上且等级相同的缺陷时,其综合等级应降低一级。
2、补焊方法
要求
对奥氏体不锈钢铸件进行补焊时,要在通风处,使之快速冷却。对珠光体低合金钢铸件和补焊面积过大的碳钢铸件则应选背风处或用挡风板遮挡,避免快冷造成裂纹。补焊一个堆层的,补焊后应立即清除药渣,并沿缺陷中心向外均匀地锤击,降低补焊应力。若补焊分几层进行(一般3~4mm为一补焊层),则每层补焊后均要及时清除药渣和锤击补焊区域。如在冬季施焊,ZG15Cr1Mo1V类的珠光体合金钢铸件,每补焊一层还应用氧-乙炔反复加热,再迅速补焊,以避免产生焊接裂纹。
几种常见铸钢件缺陷的补焊方法和经验
2011年12月10日09:40点击数:306
核心提示:本文介绍了常见阀门铸钢件的缺陷及补焊方法,铸钢件缺陷的科学补焊,是一项节能的再制造工程技术。本文就缺陷处理判断,剔除作了详细讲解。
本文介绍了常见阀门铸钢件的缺陷及补焊方法,铸钢件缺陷的科学补焊,是一项节能的再制造工程技术。本文就缺陷处理判断,剔除作了详细讲解。对补焊的方法,次数,补焊后的处理经验给予解答。总结了缺陷补焊中经济、有效的实用经验。
1.审查铸造工艺、了解生产过程重要铸件检验前应熟悉所检产品的铸造工艺、审查熔炼浇注记录、热处理记录、缺陷修复记录等影响铸钢件质量的重要工艺文件和过程控制记录,了解所检产品生产过程中的控制情况。熟悉所检产品的铸造工艺,可以此关注所检产品易出现铸造缺陷的部位。铸件轴向水平浇注,其大端放置半环形内冷铁,5道内浇口集中于大端内冷铁上部。内冷铁的尺寸和表面处理工艺上要求是很严格的,如果生产过程中控制不当,铸件就会产生严重缺陷。该工艺方案重点关注的部位:小端上表面、浇冒口根部及大圆锥形上表面。这是CCS因为浇注过程中内冷铁所带来的负面影响随钢水流动方向移至上述部位,若浇注温度偏低不能保证内冷铁熔化,上述缺陷也可能在铸件下部分产生,甚至出现裂纹,检验时要特别注意。事实证明该铸件上述部位打磨后出现大面积密集型气孔及夹渣,难以清除,最后该铸件未能通过某船级社验船师的检验。该铸件最佳的铸造工艺方案应为直立大端面向上,取消内冷铁,冒口位于大端面,底注式内浇口。这样不但有利于钢水补缩,也有利于气体杂质浮至冒口排除,从而保证轴毂等重要部位的铸造质量。2.外观质量目视和磁粉探伤检查现场检验中,对容易产生铸造缺陷的部位我们要重点关注。根据检验中的体会,如结构用铸钢件重点关注的部位有:所有圆弧部位、浇冒口根部、铸造工艺拉筋处、夹渣夹砂部位、有气割和碳弧气刨痕迹处、焊补修复处、使用中有可能承受高应力部位等。高应力区域应作目视和磁粉探伤检查,夹砂和裂纹性缺陷不允许存在。影响产品使用性能的其他缺陷(如密集型气孔、夹渣、缩孔、冷隔等)也不允许存在。目前磁粉探伤执行的标准为GB9444—88,规范和批准图纸几乎都没有明确磁粉探伤验收级别,参考有关资料,在批准图纸技术要求不明确的情况下,建议按照表面粗糙度等级可将验收级别定为:粗加工面及重要部位不得低于2级验收,其他铸造表面不得低于3级验收。磁粉探伤时应仔细观察,不能放过可疑的磁痕。有些缺陷隐藏在皮下,若不经反复磁化仔细察看磁痕是不易被发现的。特别是在检验中磁粉探伤环节非常重要,这是因为铸钢锚后续不再机械加工、铸件形状很不规则、圆弧曲面较多,其近表面缺陷难于被发现。为了保证结构用铸钢件的质量,建议这类铸钢件重要部位检验状态为粗加工状态,为了使缺陷充分显露,粗加工时尽可能少留加工余量。这是因为有些铸造缺陷存在于皮下,目视和磁粉探伤检测均难于发现,铸造毛坯表面粗糙度及其近场区影响超声波探伤的耦合和判定。粗加工后近表面的铸造缺陷得以显露,产品验船师可以在制造企业对这些缺陷进行判定处理,这样不仅减轻验船师的工作量,也可以不影响建造周期,重要的是保证了产品的质量。3.内在质量超声波检查目前参照我国制定的铸钢件超声波探伤方法和评级标准(CB7233—87)对铸钢件内在质量进行验收。该标准将被探工件厚度分为三层,即外表层、内表层、中间层内、外表层厚度分别为30mm,或者厚度的1/3,二者之中取小值。参考我国某大型国企的验收标准:①不允许裂纹类型缺陷存在。②在表层ψ3mm当量以下单个缺陷不计允许有ψ5mm当量的单个分散的夹杂类型缺陷存在。③中间层小于ψ6mm当量的单个分散缺陷不计,不允许有3600mm2面积缺陷存在,其最大边长不得大于100mm。铸钢件高应力的部位都在外表面和近表面,而不是在材料厚度的中间部位,本人认为铸钢件应根据不同的部位用不同的灵敏度定级验收。按照GB/T7233—1987评级方法,参照上述企业标准,在批准图纸中无明确超声波探伤要求的情况下,建议将各层验收级别定为:外层用φ4当量灵敏度,不得低于2级;内层用φ6当量灵敏度,不得低于3;外层和内层均不允许有裂纹类型缺陷存在。工件表面和底面应符合超声波探伤要求。若内层为铸钢件结构中某些厚大部位,这些部位本可设计为空心部位(如减轻孔等),但为了满足铸造结构和铸造工艺的需要而设计为实心部位存在的缺陷,只要不影响使用,建议这些部位的超声波探伤验收级别可