元器件的失效模式总结Beverly Chen2016-2-4一、失效分析的意义失效分析(Failure Analysis)的意义在于通过对已失效器件进行事后检查,确定失效模式,找出失效机理,确定失效的原因或相互关系,在产品设计或生产工艺等方面进行纠正以消除失效的再次发生。
一般的失效原因如下:二、失效分析的步骤失效分析的步骤要遵循先无损,后有损的方法来一步步验证。
比如先进行外观检查,再进行相关仪器的内部探查,然后再进行电气测试,最后才可以进行破坏性拆解分析。
这样可以避免破坏性的拆解破坏证据。
拿到失效样品,首先从外观检查开始。
1. 外观检查:收到失效样品后,首先拍照,记录器件表面Marking信息,观察器件颜色外观等有何异常。
2.根据器件类型开始分析:2.1贴片电阻,电流采样电阻A: 外观检查,顶面覆盖保护层有针状圆形鼓起或黑色击穿孔->内部电阻层烧坏可能->万用表测量阻值:测得开路或者阻抗偏大->内部电阻层烧毁可能->可能原因:过电压或过电流烧毁—>检查改电阻的稳态功率/电压或者瞬时功率/电压是否已超出spec要求。
Coating 鼓起并开裂黑色击穿点●可失效样品寄给供应商做开盖分析,查看供应商失效报告:如发现烧毁位置位于激光切割线下端,可确定是过电压导致失效。
需要考虑调整应用电路,降低电压应力,或者换成能承受更大应力的电阻。
激光切割线去除coating保护层后,可以看到烧毁位置位于激光切割线旁边,该位置电应力最集中。
B: 外观检查,顶面底面均无异常->万用表测量阻值:测得开路或者阻抗偏大->内部电阻层烧毁或者电极因硫化断开或阻抗增大->检查改电阻的稳态功率或者瞬时功率是否已超出spec要求,如有可能是过电压或过功率烧毁;应力分析在范围内,考虑硫化->失效样品寄给供应商分析。
查看供应商失效报告:●如发现烧毁位置位于激光切割线下端,可确定是过电压导致失效。
需要考虑降低应用电路中的电压应力,或者换成能承受更大应力的电阻。
●如果测试发现保护层附近电极硫元素含量高且电极沿保护层边缘发生断裂情况,可确认是应用中硫化物污染导致银电极被硫化生成AgS而断开需确认应用环境是否硫含量比较高。
如果有必要,更换为抗硫化电阻。
端电极与玻璃保护层交界处放大C: 外观检查,顶面覆盖保护层有任意位置的大片的脱落或者,且露出的基板或电阻层颜色正常,无黑色烧坏痕迹->万用表测量阻值:测得阻值正常,或者偏大或者开路->可能原因:外力撞击造成保护层/电阻层/基板破裂,需检查电阻是否靠近板边或者靠近螺丝或其他组装器件。
D:其他贴片电阻2.2贴片陶瓷电容A: 外观检查,外观无异常->测量C,DF,IR(端子间电阻)值与SPEC是否相符->如C,DF,IR(端子间绝缘电阻)值OK,给电容加额定电压后,再测量C,DF,IR值(静置24hr 再测比较准确),如仍在spec范围内,器件正常;如果是因换了一个品牌的同规格的陶瓷电容导致模块的输入或输出纹波偏大,需要查看一下不同品牌电容的DF(ESR影响)和DC bias 性能是否有差异。
B: 外观检查,外观无异常->测量C,DF,IR(端子间电阻)值与SPEC是否相符->如C,DF,IR(端子间电阻)值OK,给电容加额定电压后,再测量C,DF,IR值,如果C,DF,IR异常,可能是耐压不足的原因,可失效样品寄给供应商做分析以确认原器件是否有质量问题。
C: 外观检查,外观无异常->测量C,DF,IR(端子间电阻)值与SPEC是否相符->如C,DF,IR(端子间电阻)异常,再仔细观察是否有陶瓷体微裂现象->无论有无裂纹,将失效样品寄给供应商做分析。
需要注意的是柔性端子的电容,在受到板弯等机械外力后,容易在端子的弹性层靠近底面位置发生开裂而导致开路,如果柔性端子电容外观无异常,但是测量电容发现开路或者容值减小,则有可能是这种情况。
Polymer AgD: 外观检查,陶瓷体上有明显的裂纹->测量C,DF,IR(端子间电阻)值与SPEC是否相符->将失效样品寄给供应商做分析。
查看失效器件的外观以及供应商的切片分析报告和图片:如果陶瓷体的裂纹出现在电容顶面的中心,且曾圆形往外扩散,顶面可见或不可见下陷凹坑,多为电容在贴片过程中受到过大的下压里,导致电容破裂;切片照片中,如果陶瓷体上的裂纹是从端子的边缘开始往内部延伸,多为机械或者板弯●切片照片中,对于柔性端子的电容,如果器件测量开路,但是陶瓷体本身没有异常,则可能是受机械应力引起柔性层开裂导致端子开路;●切片照片中,如果陶瓷体上的裂纹是从端子的侧壁中央沿着电极往电容水平方向延伸,多为焊接热应力引起的失效;●切片照片中,如果陶瓷体上的裂纹是从端子的最外侧电极的靠边缘的位置往另一侧的电极延伸击穿,多为过电压应力失效;如果可以在切片照片上看到内部电极间陶瓷体上的裂纹是从内部电极间某个点向周围扩散,且该点不在从端子往内部延伸的裂纹上,并能看到熔融的电极金属,则可能是电容内部电压击穿,且能量较大;需要检查电路中是否有超高的电压应力存在,或者确认电容本身的耐压能力;如果对于一个应用了一段时间,C ,DF 值都没有变化,但是IR 降低,漏电流增大的电容,可能的原因有,1.电容本体有微裂,随着时间变长水汽进入,在电压的作用下,漏电流逐渐增大直至失效。
2. 电容介质材有空洞或裂纹,在电压作用下,电极的离子迁移,造成漏电流逐渐增大直至失效。
E :其他2.3 固态钽或铝电容A: 外观检查,外观无异常->测量C ,DF ,ESR 值与SPEC 是否相符->如果C ,DF ,ESR 值都正常,该器件应该是个OK 品,可将其装到模块上做进一步验证。
B: 外观检查,外观无异常->测量C ,DF ,ESR 值与SPEC 是否相符->如果C ,DF 正常,ESR 值偏大->找未焊的新样品测试ESR->如果新样品初始ESR 正常,过完回流焊后ESR 偏大,很可能是器件吸潮后过回流焊后器件内部水汽爆开造成连接异常导致ESR 偏大。
->确认物料是否真空包装,回流焊曲线是否超出J-STD-020推荐的回流焊曲线要求。
另:超声波清洗也可能会造成ESR 偏大。
一颗ESR 偏大的钽电容样品(右上角被打磨过了)因水汽进入塑封材料,在回流焊后因热机械应力在不同材料层间产生微裂C: 外观检查,外观无异常->测量C ,DF ,ESR 值与SPEC 是否相符->如果C ,DF 正常,ESR 值偏大->找未焊的新样品测试ESR->如果新样品初始ESR 异常,将样品送给供应商做质量分析。
D: 外观检查,外壳有明显裂纹或者烧焦痕迹等明显的->检查应用电路和电压电流波形,是否有电压反向,电压或纹波电流超过额定值的情况->如果应力超出,需修改电路;如果应力正常,将样品和相关信息提供给供应商做质量分析。
E :其他2.4 铝电解电容A: 外观检查,外观无异常->测量C ,DF(tan δ),漏电流, Impedance 值与SPEC 是否相符->如果C ,DF ,漏电流, Impedance 值都正常,该器件应该是个OK 品,可将其装到模块上做进一步验证。
需要注意,铝电解电容在低温下阻抗和ESR 会增大,看是否会因此对电路应用造成影响。
B: 外观检查,外观无异常->测量C ,DF(tan δ),Impedance 值与SPEC 是否相符->如果C ,DF ,漏电流, Impedance 值超出spec ,而外观又看不出来,可以先测量一下未使用过的样品的参数是否正常,未使用过的样品是正常,而装配和使用后的样品有问题,可以判定电容是装配和使用后失效。
失效分析参考下面的防爆阀鼓起的电解电容的分析步骤。
C: 外观检查,电容顶盖有明显的鼓起或者防爆阀(X 型,Y 型,K 型等形状的刻线)裂开或者溢液的情况->如果是SMD 表贴型电容,首先检查该电容的回流焊曲线是否超出了供应商的推荐的回流焊接曲线,过高的温度会使贴片铝电解电容内部的电解液过度膨胀造成防爆阀突起或裂开->如果回流焊曲线没有问题,检查应用电路是否有电压或纹波电流超过额定值的情况。
过大的电压会造成介质击穿漏电流增大,电容内部发热严重造成电解液膨胀甚至溢出;过大的纹波电流或者充放电电流,会使ESR 上损耗增大,电容内部发热严重造成电解液膨胀甚至溢出->如果应力超出,需修改电路;如果应力正常,将样品和相关信息提供给供Micro CrackMolding resinSilverGraphite Manganese应商做失效分析。
阴极为电解液的电解电容,有的可以在顶部看到防爆阀刻痕,但是有一些小封装的电解电容或者阴极为固态聚合物的电解电容的顶部也是没有防爆阀刻痕的。
D: 外观检查,电容顶盖有明显的鼓起或者防爆阀(X型,Y型,K型等形状的刻线)裂开或者溢液的情况->如果是直插引脚的电解电容,检查应用电路是否有电压或纹波电流超过额定值的情况。
过大的电压会造成介质击穿漏电流增大,电容内部发热严重造成电解液膨胀甚至溢出;,过大的纹波电流或者充放电电流,会使ESR上损耗增大,电容内部发热严重造成电解液膨胀甚至溢出->如果应力超出,需修改电路。
E: 外观检查,电容顶盖有明显的鼓起或者防爆阀(X型,Y型,K型等形状的刻线)裂开或者溢液的情况->如果是直插引脚的电解电容,且应用电路的应力正常,检查电容的引脚是否有摇晃或松动的情况。
由于机械外力造成引脚松动或扭曲的话,可能会造成引脚在电容内部电极的焊接端移位或松动,从而导致内部绝缘层破损或阻抗变大等异常情况,造成应用时电容内部温度过高引起失效->可以将样品和相关信息提供给供应商做质量分析。
F:其他2.5瓷片电容Pending2.6薄膜电容A: 外观检查,电容本体鼓起或外壳裂缝->检查C发现容量变小->如果是过完波峰焊以后出现外壳鼓包裂缝并发生容量变小的问题,可能是高温导致薄膜收缩导致失效。
->需要确认是本身器件的质量问题还是焊接条件不当。
可以将全新的薄膜电容样品,引脚做260C浸锡试验,分别浸入10S,20S,30S,看电容的外观和容量是否有变化。
如发生变化,将样品和相关信息提供给供应商做质量分析。
如外观容量等没有发生变化,需要检查我们的焊接条件,比如波峰焊的预热或焊接时间是否过长,或者薄膜电容的引脚孔径是否过大导致锡液涌上本体造成失效。
B:其他2.7电感A: 外观检查,磁芯破损->测量L值和DCR与SPEC是否相符,如果DCR正常但是L值超出SPEC,则是磁芯破损造成电感失效->铁氧体磁芯破损,考虑组装或运输过程中的机械外力对器件造成的影响;如果是金属粉模压磁芯破裂,需检查是否是在清洗过程,或者回流焊后破损或者原材料来料就有破损。