当前位置:文档之家› 河北省保定安国中学电磁感应中单杆模型的动态分析(10页)

河北省保定安国中学电磁感应中单杆模型的动态分析(10页)

河北省保定安国中学电磁感应中单杆模型的动态分析速度V0≠0 V=0示意图单杆以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻不计,杆长为L轨道光滑水平,杆质量为m,电阻不计,杆长为L,拉力F恒定力学和运动学分析导体杆以速度v切割磁感线产生感应电动势BLvE=,电流RBLvREI==,安培力RvLBBILF22==,做减速运动:↓↓⇒av,当0=v时,0=F,=a,杆保持静止开始时mFa=,杆ab速度↑⇒v感应电动势↑⇒↑⇒=IBLvE安培力↑=BILF安由aFF m=-安知↓a,当=a时,v最大,22LBFRvm=图像观点FBRv0BR1、(多选)如图所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN 成水平沿导轨滑下,在与导轨和电阻R 组成的闭合电路中,其他电阻不计。

当金属杆MN 进入磁场区后,其运动的速度图像可能是下图中的( ACD )在电磁感应现象问题中求解距离问题的方法:①运动学公式。

②动量定理。

v m tR vL B ∆=∆总22(t v ∆是V-t 图像的面积)③利用电量总R nBxL q ==总R n φ∆ 2、质量为m 的导体棒可沿光滑水平的平行轨道滑行,两轨道间距离为L ,导轨左端与电阻R 连接,放在竖直向上的匀强磁场中,磁感应强度为B ,杆的速度为v 0,电阻不计,如图,试求棒所滑行的距离。

能 量 观 点 动能全部转化为内能:2021mv Q =F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += v 0B R3、如图所示,间距为L,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m,电阻也为R的金属棒,金属棒与轨道接触良好.整个装置处于竖直向上、磁感应强度为B的匀强磁场中.现使金属棒以初速度v沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q.下列说法正确的是( D )A.金属棒在导轨上做匀减速运动 B.整个过程中电阻R上产生的焦耳热为C.整个过程中金属棒在导轨上发生的位移为D.整个过程中金属棒克服安培力做功为4、(多选)如图,两根平行光滑金属导轨MN和PQ放置在水平面上,间距为L,电阻不计,磁感应强度为B的匀强磁场垂直轨道平面向下,两导轨之间连接的电阻阻值为R。

在导轨上有一均匀金属棒ab,其长度为2L,阻值为2R.金属棒与导轨垂直且接触良好,接触点为C、d。

在ab棒上施加水平拉力使其以速度v向右匀速运动,设金属导轨足够长,下列说法正确的是(BD )A、金属棒c、d两点间的电势差为BLvB 、金属棒ab 两点间的电势差为BLv 23C 、通过电阻的电流大小为RBLvD 、水平拉力的功率为Rv L B 22225、(多选)如图,MN 是两条足够长的光滑平行金属导轨,倾角θ=30°,间距L=0.5m ,导轨间存在磁感应强度大小B=2T 、方向垂直导轨平面向上的匀强磁场。

PQ 是两根完全相同的导体棒,长度为L ,质量m=0.5kg ,电阻R=0.8Ω,两导体棒间隔一定距离,垂直导轨放置在立柱右侧。

某时刻开始,处于上方的导体棒P 受到沿导轨平面向上、大小与时间的关系为t F 25.15.3+=的变力作用,在开始的一段时间内导体棒P 做匀加速直线运动,当处于下方的导体棒Q 开始运动时,撤去导轨上的立柱。

两导轨均与导轨接触良好,导轨电阻不计,重力加速度g 取102/s m ,下列说法正确的是( BD )A 、导体棒P 做匀加速运动的加速度大小为2m/s2,运动1s 后导体棒P 的速度为2m/s ,此时,导体棒Q 开始运动B 、当导体棒Q 开始运动时,导体棒P 沿导轨平面向上运动的距离为4m,这个过程通过回路某一横截面的电量为2.5CC 、当到一棒Q 开始运动时,导体棒P 的机械能增加了14J ,回路中电流为2.5A ,产生的焦耳热为20JD、当导体棒Q运动了4s时,导体棒PQ组成的系统的总动量为16kgm/s6、(多选)图甲所示是电阻可忽略的足够长的光滑平行金属导轨。

已知导轨的间距L=1.0m,导轨的倾角,导轨上端接的电阻,整个装置处在垂直于导轨平面向上的匀强磁场中。

阻值、质量m=0.2kg的金属棒与导轨垂直且接触良好,从导轨上端由静止开始下滑。

电流传感器记录了金属棒在下滑过程中产生的电流随时间变化的规律,如图乙所示。

取g=10m/s2。

则(AC)A. 磁感应强度的大小为1.0TB. 0~2.0s的时间内,通过导体棒的电荷量为2.0CC. 0~2.0s的时间内,导体棒下滑的距离为3.2mD. 0~2.0s 的时间内,电阻R产生的焦耳热为2.8J7、(多选)如图甲所示,间距为40cm的两金属导轨ab、cd光滑且足够长,固定于同一水平面上,导轨的电阻可不计,定值电阻R的阻值为2Ω。

垂直于导轨放置一质量为0.8kg的金属杆,金属杆连入电路中的电阻为2Ω。

整个装置处于匀强磁场中,磁感应强度为2T,磁场方向垂直于导轨平面向下。

现对杆施加一水平向右的拉力F,使杆从静止开始运动,以某时刻作为零时刻,图乙所示为R两端电压的U随时间变化的关系图象,则下列平方2说法正确的是( BD )A 、金属杆做匀加速直线运动B 、5s 末金属杆的速度为3m/sC 、5s 内金属杆产生的焦耳热为5.4JD 、5s 内拉力F 做的功为7.2J8、(多选)如图所示,两根平行光滑金属导轨固定在同一水平面内,其左端接有定值电阻R ,建立ox 轴平行于金属导轨,在40≤≤x m 的空间区域内存在着垂直导轨平面向下的磁场,磁感应强度B 随坐标x (以m 为单位)的分布规律为)(2.0-8.0T x B =,金属棒ab 在外力作用下从0=x 处沿导轨向右运动,ab 始终与导轨垂直并接触良好,不计导轨和金属棒的电阻。

设在金属棒从11=x m 处,经22=x m 到33=x m 的过程中,电阻器R 的电功率始终保持不变,则(BCD ) A .金属棒做匀速直线运动B .金属棒运动过程中产生的电动势始终不变C .金属棒在1x 与2x 处受到磁场B 的作用力大小之比为3:2D .金属棒从1x 到2x 与从2x 到3x 的过程中通过R 的电量之比为5:39、如图M 、N 是水平面内平行放置的光滑金属导轨,导轨右侧弯折后且关于x 轴堆成,导轨右侧顶点坐标为x=4m ,导轨间存在垂直于导轨的匀强磁场(图中未画出)。

金属棒ab 静止在导轨上,与导轨始终垂直并接触良好,ab 中点串接一体积很小 的电阻R 。

某时刻开始金属棒ab 在外力作用下向右运动,已知金属棒ab 在导轨上从x=0到x=4cm 处的过程中,电阻R 消耗的电功率不变,除电阻R 外其余部分电阻不计。

下列说法不正确的是A 、金属棒ab 经过x=1m 和x=3m 处时速度大小之比为1:2B 、金属棒ab 经过x=1m 和x=3m 处时受到的安培力大小之比为2:1C 、在金属棒ab 从x=1m 到x=2m 和x=2m 到x=3m 处的过程中,通过电阻R 的电量之比为1:1D 、在金属棒ab 从x=1m 到x=2m 和x=2m 到x=3m 处的过程中,通过电阻R 消耗的电能之比 为4:3注意:求电能的公式IRq IRIt Rt I Q ===2所以D 选项中消耗电能之比为电量之比10、如图所示,间距为L 的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度为B 的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强度也为B 的匀强磁场.闭合开关S ,让金属杆MN 从图示位置由静止释放,已知金属杆MN 运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆MN 始终与导轨接触良好,重力加速度为g .求: (1)金属杆MN 在倾斜导轨上滑行的最大速率v m ;(2)金属杆MN 在倾斜导轨上运动,速度未达到最大速度v m 前,当流经定值电阻的电流从零增大到I 0的过程中,通过定值电阻的电荷量为q,求这段时间内在定值电阻上产生的焦耳热Q;(3)金属杆MN在水平导轨上滑行的最大距离x m.解析(1)金属杆MN在倾斜导轨上滑行的速度最大时,其受到的合力为零,对其受力分析,可得mg sin θ-BI m L=0根据法拉第电磁感应定律、闭合电路欧姆定律可得:Im =BLvm2r解得:v m=2mgr sin θB2L2(2)设在这段时间内,金属杆MN运动的位移为x 由电流的定义可得:q=IΔt根据法拉第电磁感应定律、闭合电路欧姆定律得:平均电流I=BΔS2rΔt=BLx2rΔt解得:x=2qr BL设电流为I0时金属杆MN的速度为v0,根据法拉第电磁感应定律、闭合电路欧姆定律,可得I0=BLv2r,解得v0=2rI0BL设此过程中,电路产生的焦耳热为Q热,由功能关系可得:mgx sin θ=Q热+12mv2定值电阻r产生的焦耳热Q=12Q热解得:Q=mgqr sin θBL-mI2r2B2L2(3)设金属杆MN在水平导轨上滑行时的加速度大小为a,速度为v时回路电流为I,由牛顿第二定律得:BIL=ma由法拉第电磁感应定律、闭合电路欧姆定律可得:I=BLv2r得:B2L22rv=mΔvΔtB2L2 2r vΔt=mΔv,即B2L22rxm=mv m 得:x m=4m2gr2sin θB4L411、如图所示,电动机牵引一根横跨在竖直光滑导轨上的导体棒MN,开始时导体棒静止,长度L=1m,质量m=0.1kg,电阻R1=0.5Ω.光滑导轨的PQ部分电阻为R2=0.5Ω,其它部分电阻和摩擦不计.导体框架区域内有垂直导轨面的磁场,磁感应强度B=1T.当导体棒上升3.8m 时获得稳定的速度,此过程中导体棒上产生的焦耳热为1J,牵引导体棒的电压表、电流表的读数分别恒定为7V、1A,电动机内阻r=1Ω,g取10m/s2,求(1)电动机输出的机械功率;(2)棒能达到的稳定速度;(3)棒从静止达到稳定速度所需时间.解析:(1)导体棒从静止开始不可能做匀减速运动.导体棒在电动机牵引力的作用下做加速运动,先做加速度减小的加速度运动,后做匀速运动,达到稳定状态.此时电动机的输出功率为:P 出=IU-I 2r=1×7-12×2=5W; (2)电动机的输出功率就是电动机牵引棒的拉力的功率, 则有P 出=Fv当棒达稳定速度时F=mg+BI′L,感应电流RBLvR E I ==' 则棒所受的安培力大小为RvL B F 22=安根据平衡条件得:F=mg+F 安,联立以上三式,解得棒达到的稳定速度为:v=2m/s . (3)由能量守恒定律得:Q mv mgh t P ++=221出 代入数据解得:t=1s答:(1)电动机输出的机械功率是5W ; (2)棒能达到的稳定速度是2m/s ; (3)棒从静止达到稳定速度所需时间是1s .。

相关主题