当前位置:文档之家› 理想气体状态方程

理想气体状态方程

理想气体状态方程
理想气体状态方程(ideal gas,equation of state of),也称理想气体定律或克拉佩龙方程,描述理想气体状态变化规律的方程。

质量为m,,摩尔质量为M的理想气体,其状态参量压强p、体积V和绝对温度T之间的函数关系为pV=mRT/M=nRT 式中ρ和n分别是理想气体的摩尔质量和物质的量;R是气体常量。

对于混合理想气体,其压强p是各组成部分的分压强p1、p2、……之和,故
pV=(p1+p2+……)V=(n1+n2+……)RT,式中n1、n2、……是各组成部分的摩尔数。

以上两式是理想气体和混合理想气体的状态方程,可由理想气体严格遵循的气体实验定律得出,也可根据理想气体的微观模型,由气体动理论导出。

在压强为几个大气压以下时,各种实际气体近似遵循理想气体状态方程,压强越低,符合越好,在压强趋于零的极限下,严格遵循。

pV=nRT(克拉伯龙方程[1])
p为气体压强,单位Pa。

V为气体体积,单位m3。

n为气体的物质的量,单位mol,T为体系温度,单位K。

R为比例系数,数值不同状况下有所不同,单位是J/(mol·K)
在摩尔表示的状态方程中,R为比例常数,对任意理想气体而言,R是一定的,约为8.31441±0.00026J/(mol·K)。

如果采用质量表示状态方程,pV=mrT,此时r是和气体种类有关系的,r=R/M,M为此气体的平均分子量.
经验定律
(1)玻意耳定律(玻—马定律)
当n,T一定时V,p成反比,即V∝(1/p)①
(2)查理定律
当n,V一定时p,T成正比,即p∝T ②
(3)盖-吕萨克定律
当n,p一定时V,T成正比,即V∝T ③
(4)阿伏伽德罗定律
当T,p一定时V,n成正比,即V∝n ④
由①②③④得
V∝(nT/p)⑤
将⑤加上比例系数R得
V=(nRT)/p 即pV=nRT
实际气体中的问题当理想气体状态方程运用于实际气体时会有所偏差,因为理想气体的基本假设在实际气体中并不成立。

如实验测定 1 mol乙炔在20℃、101kPa 时,体积为24.1 dm,,而同样在20℃时,在842 kPa下,体积为0.114 dm,,它们相差很多,这是因为,它不是理想气体所致。

一般来说,沸点低的气体在较高的温度和较低的压力时,更接近理想气体,如氧气的沸点为-183℃、氢气沸点为-253℃,它们在常温常压下摩尔体积与理想值仅相差
0.1%左右,而二氧化硫的沸点为-10℃,在常温常压下摩尔体积与理想值的相差达到了2.4%。

应用一定量处于平衡态的气体,其状态由p、V和T刻划,表达这几个量之间的关系的方程称之为气体的状态方程,不同的气体有不同的状态方程。

但真实气体的方程通常十分复杂,而理想气体的状态方程具有非常简单的形式。

虽然完全理想的气体并不可能存在,但许多实际气体,特别是那些不容易液化、凝华的气体(如氦、氢气、氧气、氮气等,由于氦气不但体积小、互相之间作用力小、也是所有气体中最难液化的,因此它是所有气体中最接近理想气体的气体。

)在常温常压下的性质已经十分接近于理想气体。

此外,有时只需要粗略估算一些数据,使用这个方程会使计算变得方便很多。

体积小[2]、互相之间作用力小、也是所有气体中最难液化的[3],因此它是所有气体中最接近理想气体的气体。

)在常温常压下的性质已经十分接近于理想气体。

此外,有时只需要粗略估算一些数据,使用这个方程会使计算变得方便很多。

[编辑]计算气体的压强、体积、温度或其所含物质的量
从数学上说,当一个方程中只含有1个未知量时,就可以计算出这个未知量。

因此,在压强、体积、温度和所含物质的量这4个量中,只要知道其中的3个量即可算出第四个量。

这个方程根据需要计算的目标不同,可以转换为下面4个等效的公式:
∙求压力:
∙求体积:
∙求所含物质的量:
∙求温度:
∙温度、体积恒定时,气体压强之比与所含物质的量的比相同,即可得Ρ平/P始=n平/n始
温度、压力恒定时,气体体积比与气体所含物质量的比相同,即V平/V始=n平/n始
推广到一般情况,若t℃是体积为V t,代替V100,则有:

即:恒压时,一定量气体每升高1℃,它的体积膨胀了0℃时的[6]。

[编辑]盖-吕萨克定律
推导过程如下:设某气体原始状态是p1、V1、T1,最终状态为p2、V2、T2;
首先假定温度T1不变,则;
接着假设压力p2不变,则或
将带入第一步,得恒量
在这个方程中,对于1mol的气体,恒量为R,而n(mol)的气体,恒量为nR,R称为摩尔气体常数。

[编辑]推广
经过Horstmam和Mendeleev等人的支持和提倡,19世纪末,人们开始普遍地使用现行的理想气体状态方程:pV = nRT
[编辑]理想气体常数
理想气体常数(或称摩尔气体常数、普适气体恒量)的数值随p和V 的单位不同而异,以下是几种常见的表述:
[编辑]使用到该方程的定律
[编辑]阿伏伽德罗定律
阿伏伽德罗定律是阿伏伽德罗假说在19世纪末由气体分子运动论给予理论证明后才成为定律。

它被表述为:在相同的温度与相同的压力下,相同体积的气体所含物质的量相同。

通过理想气体方程很容易导出这个定律:若有A、B两种气体,它们的气体方程分别是p A V A = n A RT A和p B V B = n B RT B,当p A = p B,T A = T B,V A = V B时,显然n A = n B。

这个定律也是理想气体方程的一个例证。

[编辑]气体分压定律
主条目:气体分压定律
气体分压定律是1807年由道尔顿首先提出的,因此也叫道尔顿分压定律。

这个定律在现代被表述为:在温度与体积恒定时,混合气体的总压力等于组分气体分压力之和;气体分压等于总压气体摩尔分数或体积分数。

使用数学方程表示为
和。

在恒温、恒体积的条件下,
将pV = nRT代入,
可得,
易得或。

当温度与压力相同的条件下,由于,代入pV = nRT,
易得,
代入或,
可得或。

[编辑]实际气体中的问题
当理想气体状态方程运用于实际气体时会有所偏差,因为理想气体的基本假设在实际气体中并不成立。

如实验测定1 mol乙炔在20℃、101kPa时,体积为24.1 dm3,,而同样在20℃时,在842 kPa下,体积为0.114 dm3,,它们相差很多,这是因为,它不是理想气体所致。

一般来说,沸点低的气体在较高的温度和较低的压力时,更接近理想气体,如氧气的沸点为-183℃、氢气沸点为-253℃,它们在常温常压下摩尔体积与理想值仅相差0.1%左右,而二氧化硫的沸点为-10℃,在常温常压下摩尔体积与理想值的相差达到了2.4%。

[编辑]压缩係数
由于实际气体和理想值之间存在偏差,因此常用压缩係数Z表示实际气体的实验值和理想值之间的偏差,计算Z的方程为:。

当气压很低时,各种气体的性质都接近于理想气体,随压力升高,各种气体偏离理想状态的情况不同,压缩係数Z便会随之改变。

Z受到两个因素的影响:
1.实际气体分子间的吸引力会使其对器壁碰撞而产生的压力比理
想值小,这会使Z减小;
2.实际气体分子所占用的空间体积使实测体积一定大于理想状
态,这会使Z增大。

其具体形式为
其中与理想气体状态方程不同的几个参数为:
o a' 为度量分子间引力的唯象参数
o b' 为单个分子本身包含的体积
o v 为每个分子平均占有的空间大小(即气体的体积除以总分子数量)
o k 为玻尔兹曼常数
而更常用的形式为:
其中几个参数为:
o V 为总体积
o a 为度量分子间引力的参数
o b 为1摩尔分子本身包含的体积之和b = N A b'
o N A为阿伏加德罗常数.
a和b都是常数,叫做范德瓦耳斯常数,其中a用于校正压力,b用于修正体积。

在较低的压力情况下,理想气体状态方程是范德瓦耳斯方程的一个良好近似。

而随着气体压力的增加,范氏方程和理想气体方程结果的差别会变得十分明显。

范氏方程对气-液临界温度以上流体性质的描写优于理想气体方程。

对温度稍低于临界温度的液体和低压气体也有较合理的描述。

但是,当描述对象处于状态参量空间(P,V,T)中气液相变区(即正在发生气液转变)时,对于固定的温度,气相的压强恒为所在温度下的饱和蒸气压,即不再随体积V(严格地说应该是单位质量气体占用的体积,即比容)变化而变化,所以这种情况下范氏方程不再适用。

理想气体状态方程和范式方程的重大区别在于,理想气体状态方程本身不能预言相变的发生,因为其一级相变点是无解的,而范式方程则存在相变点。

相关主题