当电子从高能级跃迁到低能级时级时,原子会辐射能量;当电子从低能级跃迁到高能级时,原子要吸收能量.由于电子的能级是不连续的,所以原子在跃迁时吸收或辐射的能量都不是任意的,这个能量等于电子跃迁时始末两个能级间的能量差.能量差值不同,发射的光频率也不同,我们就能观察到不同颜色的光.
一、对玻尔原子模型的理解
1.氢原子的能量
(1)轨道与能量:对氢原子而言,核外的一个电子绕核运行时,若半径不同,则对应着的原子能量也不同.轨道是不连续的,能量也是不连续的,即能量量子化.
(2)负能量:若使原子电离,外界必须对原子做功输入能量,使电子摆脱它与原子核之间的库仑力的束缚,所以原子电离后的能量比原子其他状态的能量都高.我们把原子电离后的能量记为0,即选取电子离核无穷远处即电子和原子核间无作用力时氢原子的能量为零,则其他状态下的能量值均为负值.
因此有E 1=-13.6eV ,E n = E 1/n 2
这里E 1和E n 是指电子的总能量,即电子动能与电势能的和.
2.卢瑟福原子模型与玻尔原子模型的相同点与不同点.
(1)相同点
①原子有带正电的核,原子质量几乎全部集中在核上.
②带负电的电子在核外运转.
(2)不同点
卢瑟福模型:库仑力提供向力心,r 的取值是连续的.
玻尔模型:轨道r 是分立的、量子化的,原子能量也是量子化的.
二、氢原子的辐射
1.能级的跃迁
根据玻尔模型,原子只能处于一系列的不连续的能量状态中。
这些状态分基态和激发态两种,其中原子在基态时是稳定的,原子在激发态时是不稳定的,当原子处于激发态时会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.
所以处于能量较高激发态的一群氢原子,自发地向低能级跃迁时,发射光子的频率数满足2
)1(2-=n n c n . 2.光子的发射
原子能级跃迁时以光子的形式放出能量,原子在始末两个能级E m 和E n (m>n)间跃迁时发射光子的频率可由下式表示:n m E E h -=ν
由上式可以看出,能级差越大,放出光子的频率就越高.
3.光子的吸收
光子的吸收是光子发射的逆过程,原子在吸收了光子后会从较低能级向较高能级跃迁.两个能级的差值仍是一个光子的能量.其关系式仍为n m E E h -=ν.
说明:由于原子的能级是一系列不连续的值,则任意两个能级差也是不连续的,故原子只能发射一些特定频率的光子;同样也只能吸收一些特定频率的光子.但是,当光子能量足够大时,如光子能量E≥13.6 eV 时.则处于基态的氢原子仍能吸收此光子并发生电离.
因此光子的发射和吸收可表示如下
m E 高能级
总之,在计算氢原子辐射(或吸收)光子的最大能量或最长波长的问题时,一方面切记光子能量等于两个能级差;另一方面要运用爱因斯坦的光子说E=hv ,能级差最大的光子的频率大,波长短.
三、原子能级跃迁问题
跃迁是指电子从某一轨道跳到另一轨道,而电子从某一轨道跃迁到另一轨道对应着原子就从一个能量状态(定态)跃迁到另一个能量状态(定态).
1.跃迁时电子动能、原子电势能与原子能量的变化
当轨道半径减小时,库仑引力做正功,原子的电势能E p 减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.
2.使原子能级跃迁的两种粒子一光子与实物粒子
(1)原子若是吸收光子的能量而被激发,其光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n 能级时能量有余,而激发到n+1时能量不足,则可激发到n 能级的问题.
(2)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E=E n -E k ),均可使原子发生能级跃迁.
3.原子跃迁时需注意的几个问题
(1)注意一群原子和一个原子
氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.
(2)注意直接跃迁与间接跃迁
原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况的辐射(或吸收)光子的频率不同.
(3)注意跃迁与电离
原子跃迁时.不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差.若想把处于某一定态上的原子的电子电离出去,就需要给原子一定的能量.如基态氢原子电离,其电离能为13.6 eV ,只要能量等于或大于13.6 eV 的光子都能被基态氢原子吸收而电离,只不过入射光子的能量越大,原子电离后产生的电子具有的动能越大.。