目前几种比较常见的直接转矩控制策略中,对于中小容量而言,控制方案重点在于进行转矩、无差拍控制和提高。
对大容量来说,其区别在于低速时采用了间接转矩控制,从而达到低速时降低转矩脉动的。
直接转矩控制技术概述相对于直流电机在结构简单、维护容易、对环境要求低以及节能和提高生产力等方面具有足够的优势,使得交流调速已经广泛运用于工农业生产、交通运输、国防以及日常生活之中。
随着电力电子技术、微电子技术、控制理论的高速发展,交流调速技术也得到了长足的发展。
目前在高性能的交流调速领域主要有和直接转矩控制两种。
1968年Darmstader工科大学的Hasse初步提出了磁场定向控制(Field Orientation)理论,之后在1971年由的对此理论进行了总结和实现,并以专利的形式发表,逐步完善并形成了现在的各种矢量控制方法。
特点对于直接转矩控制来说,一般文献认为它由德国鲁尔大学的教授和的于1985年首先分别提出的。
对于磁链圆形的直接转矩控制来说,其基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。
在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。
控制事实上,1977年A·B·Plunkett曾经在IEEE的工业应用期刊上提出了类似于目前直接转矩控制的结构和思想的直接磁链和转矩调节方法,在这种方法中,转矩给定与反馈之差通过PI调节得到滑差频率,此滑差频率加上电机转子机械速度得到逆变器应该输出的电压定子频率;定子磁链给定与反馈之差通过积分运算得到一个电压与频率之比的量,并使之与定子频率相乘得到逆变器应该输出的电压,最后通过SPWM方法对电机进行控制。
发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。
但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。
第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。
特别是它的系统快速响应性是发电机、电动机系统不能比拟的。
但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一定的危害等。
第四,1957年世界上出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。
由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。
晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞弧变流器(放大倍数1000)高10倍;在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。
[14]从20世纪80年代中后期起,以晶闸管整流装置取代了以往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。
同时,控制电路也实现了高度集成化、小型化、高可靠性及低成本。
以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。
随着微型计算机、超大规模集成电路、新型电子电力开关器件和新型传感器的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,直流电动机控制也装置不断向前发展。
微机的应用使直流电气传动控制系统趋向于数字化、智能化,极大地推动了电气传动的发展。
近年来,一些先进国家陆续推出并大量使用以微机为控制核心的直流电气传动装置,如西门子公司的SIMOREG K 6RA24、ABB公司的PAD/PSD等等。
随着现代化步伐的加快,人们生活水平的不断提高,对自动化的需求也越来越高,直流电动机应用领域也不断扩大。
例如,军事和宇航方面的雷达天线,火炮瞄准,惯性导航,卫星姿态,飞船光电池对太阳得跟踪等控制;工业方面的各种加工中心,专用加工设备,数控机床,工业机器人,塑料机械,印刷机械,绕线机,纺织机械,工业缝纫机,泵和压缩机等设备的控制;计算机外围设备和办公设备中的各种磁盘驱动器,各种光盘驱动器,绘图仪,扫描仪,打印机,传真机,复印机等设备的控制;音像设备和家用电器中的录音机,录像机,数码相机,洗衣机,出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。
如果转子转到如上图(b)所示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。
此时载流导体ab 和cd 受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。
这就是直流电动机的工作原理。
外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。
[4]实用中的直流电动机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。
直流电机的调速原理众所周知,直流电机转速n 的表达式为:Φ-=K IR U n (2 - 1) 式中:U-电枢端电压I-电枢电流R-电枢电路总电阻Φ-每极磁通量K-与电机结构有关的常数 由上式可知,直流电机转速n 的控制方法有三种:(1)调节电枢电压U 。
改变电枢电压从而改变转速,属恒转矩调速方法,动态响应快,适用于要求大范围无级平滑调速的系统;(2)改变电机主磁通中只能减弱磁通,使电动机从额定转速向上变速,属恒功率调速方法,动态响应较慢,虽能无级平滑调速,但调速范围小;(3)改变电枢电路电阻R 在电动机电枢外串电阻进行调速,只能有级调速,平滑性差、机械特性软、效率低。
改变电枢电路电阻的方法缺点很多,目前很少采用:弱磁调速范围不大,往往与调压调速配合使用;因此,自动调速系统以调压调速为主,这也是论文中设计系统所采用的方法。
改变电枢电压主要有三种方式:旋转变流机组、静止变流装置、脉宽调制(PWM )变换器(或称直流斩波器)。
(l)旋转变流机组用交流电动机和直流发电机组成机组以获得可调直流电压,简称G-M 系统,国际上统称Ward-Leonard 系统,这是最早的调压调速系统。
G-M 系统具有很好的调速性能,但系统复杂、体积大、效率低、运行有噪音、维护不方便。
(2)20世纪50年代,开始用汞弧整流器和闸流管组成的静止变流装置取代旋转变流机组,但到50年代后期又很快让位于更为经济可靠的晶闸管变流装置。
采用晶闸管变流装置供电的直流调速系统简称V-M 系统,又称静止的Ward-Leonard 系统,通过控制电压的改变来改变晶闸管触发控制角α。
进而改变整流电压U d 的大小,达到调节直流电动机转速的目的。
V-M 在调速性能、可靠性、经济性上都具有优越性,成为直流调速系统的主要形式。
(3) 脉宽调制 (PWM)变换器又称直流斩波器,是利用功率开关器件通断实现控制,调节通断时间比例,将固定的直流电源电压变成平均值可调的直流电压,亦称DC-DC 变换器。
绝大多数直流电动机采用开关驱动方式。
开关驱动方式是使半导体功率器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。
直流电机的数学模型直流电动机的等效电路如下图所示。
图直流电动机等效图电路的电压平衡方程和力矩平衡方程为: E I L I R U a a a a a a dt d ++= (2 - 2) Ω--=ΩK T T D l e dtd J (2 - 3) 式中 Ua 电源电压;Ia-电枢电流 ;Ra-电枢电阻(包括电刷、换向器以及两者之间的电阻);La-电枢电感;Ea-电枢反电动势;J-转动惯量;Ω-转动的角速度;Te-电磁转距;Tl-负载转距;K-转动部分的阻尼系数.D永磁直流电动机的电枢反电动势可表示为:Ea=Ke*Ω (2 - 4)式中Ke-反电动势常数.电磁转矩为:*Ia (2 - 5)Te=KT式中K-磁转矩常数。
[2]T动态工作特性是指实际的动作与相应的动作命令之间的响应关系。
将式 (2-2)、式(2-3)、式(2-4)和式(2-5)作拉氏变换,得到如下函数:Ua(s )=RaIa(s)+ LaSIa(s)+ Ea(s)图主控电路图隔离单元模块为了防止电机驱动单元对数字控制单元的干扰,必须在两者之间加隔离电路来防止干扰的产生。
避免LMD18200的驱动电路对控制信号的干扰,对于LMD18200的引脚3(转向输入)、引脚5(PWM输入)与LM629的PWMS、PWMM 引脚之间通过光电耦合器6N137连接。
(l) 光电耦合器的选型LM629的PWMM脚输出的调制信号如图所示,如果LM629接6MHz晶振,其最小输出占空比(1/128)时的接通时间为:4/f CLK=4/6*106s=因此应选择高速光耦。
而N6137的工作频率可达到10MHZ,即它可用在开关周期为:l/l07s=因此光耦可选6N137。
K P=(input[0][0][e*10]*KP_memf[4]+((input[0][1][e*10]>input[1][0][ec*10])inp ut[1][0][ec*10]:input[0][1][e*10])*KP_memf[3]+((input[0][1][e*10]>input[1][1][ec* 10])input[1][1][ec*10]:input[0][1][e*10])*KP_memf[2]+((input[0][1][e*10]>input[1] [2][ec*10])input[1][2][ec*10]:input[0][1][e*10])*KP_memf[1]+input[0][2][e*10]*K P_memf[0])/(input[0][0][e*10]+((input[0][1][e*10]>input[1][0][ec*10])input[1][0][ec*10]:input[0][1][e*10])+((input[0][1][e*10]>input[1][1][ec*10])input[1][1][ec*10]:i nput[0][1][e*10])+((input[0][1][ e*10]>input[1][2][ec*10])input[1][2][ec*10]:input[0 ][1][e*10])+input [0] [2] [e*10]);这样编写程序的好处就是略去模糊推理的判断转移程序,例如在某个时刻的误差e对应为,误差变化率为8那么对于误差隶属度函数input[0][0][98]的取值必为0,input[0][1][98]同样为0,只有input [0] [2] [98]的取值为0xFF;误差变化率隶属度函数值input [1] [0] [98]为0, input[1] [1] [98]为0, input[1] [2] [98]为0xFF,因此上式的会等价成:K P=(0+0+0+0+255*40)/255所以计算量不大并且省略掉了条件转移相关程序。