场效应晶体管中英文介绍(field-effect transistor,缩写:FET)场效应晶体管是一种通过电场效应控制电流的电子元件。
它依靠电场去控制导电沟道形状,因此能控制半导体材料中某种类型载流子的沟道的导电性。
场效应晶体管有时被称为单极性晶体管,以它的单载流子型作用对比双极性晶体管(bipolar junction transistors,缩写:BJT)。
尽管由于半导体材料的限制,以及曾经双极性晶体管比场效应晶体管容易制造,场效应晶体管比双极性晶体管要晚造出,但场效应晶体管的概念却比双极性晶体管早。
历史场效应晶体管于1925年由Julius Edgar Lilienfeld和于1934年由Oskar Heil分别发明,但是实用的器件一直到1952年才被制造出来(结型场效应管,Junction-FET,JFET)。
1960年Dawan Kahng发明了金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-effect transistor, MOSFET),从而大部分代替了JFET,对电子行业的发展有着深远的意义。
基本信息场效应管是多数电荷载体的设备。
该装置由一个活跃的信道,通过该多数载流子,电子或空穴,从源到流向漏极。
源极和漏极端子导体被连接到半导体通过欧姆接触。
的通道的导电性的栅极和源极端子之间施加的电位是一个函数。
FET的三个端子是:源极(S),通过其中的多数载流子输入通道。
进入该通道,在S点的常规的电流被指定由IS。
漏极(D),通过其中的多数载流子离开的通道。
常规电流在D通道进入指定的ID。
漏源电压VDS。
栅极(G),调制的通道的导电性的端子。
通过施加电压至G,一个可以控制的ID。
场效应晶体管的类型在耗尽模式的FET下,漏和源可能被掺杂成不同类型至沟道。
或者在提高模式下的FET,它们可能被掺杂成相似类型。
场效应晶体管根据绝缘沟道和栅的不同方法而区分。
FET的类型有:DEPFET(Depleted FET)是一种在完全耗尽基底上制造,同时用为一个感应器、放大器和记忆极的FET。
它可以用作图像(光子)感应器。
DGMOFET(Dual-gate MOSFET)是一种有两个栅极的MOSFET。
DNAFET是一种用作生物感应器的特殊FET,它通过用单链DNA分子制成的栅极去检测相配的DNA链。
FREDFET(Fast Recovery Epitaxial Diode FET)是一种用于提供非常快的重启(关闭)体二极管的特殊FET。
HEMT(高电子迁移率晶体管,High Electron Mobility Transistor),也被称为HFET(异质结场效应晶体管,heterostructure FET),是运用带隙工程在三重半导体例如AlGaAs中制造的。
完全耗尽宽带隙造成了栅极和体之间的绝缘。
IGBT(Insulated-Gate Bipolar Transistor)是一种用于电力控制的器件。
它和类双极主导电沟道的MOSFET的结构类似。
它们一般用于漏源电压范围在200-3000伏的运行。
功率MOSFET仍然被选择为漏源电压在1到200伏时的器件.ISFET是离子敏感的场效应晶体管(Ion-Sensitive Field Effect Transistor),它用来测量溶液中的离子浓度。
当离子浓度(例如pH值)改变,通过晶体管的电流将相应的改变。
JFET用相反偏置的p-n结去分开栅极和体。
MESFET(Metal-Semiconductor FET)用一个肖特基势垒替代了JFET的PN结;它用于GaAs 和其它的三五族半导体材料。
MODFET(Modulation-Doped FET)用了一个由筛选过的活跃区掺杂组成的量子阱结构。
MOSFET用一个绝缘体(通常是二氧化硅)于栅和体之间。
NOMFET是纳米粒子有机记忆场效应晶体管(Nanoparticle Organic Memory FET)。
[1]OFET是有机场效应晶体管(Organic FET),它在它的沟道中用有机半导体。
用途IGBT在开关内燃机点燃管中有用。
快速开关和电压阻碍能力在内燃机中是非常重要的。
大部分常用的FET是MOSFET。
CMOS(complementary-symmetry metal oxide semiconductor,完全对称MOS)过程技术是现代数字集成电路的基础。
这个过程技术排列了相连成串的p 沟道MOSFET和n沟道MOSFET(通常在提高模式),使得当一个开,另一个则关。
MOSFET中栅和沟道之间的脆弱绝缘层使得它在操作中容易受到静电损坏。
器件在合适的设计电路中安装后则通常不成问题。
在FET中,当在线性模式下运行,电子能向各个方向流动通过沟道。
当器件是特别的(但并不是经常的)从源极到漏极的对称制造,漏极和源极的名称变化有时是随机的。
这使得FET 适合用来开关路程间的模拟信号(多路技术)。
例如,由这一概念,固体混合板就可以被构造出。
英文翻译部分The field-effect transistor (FET) is a transistor that uses an electric field to control the shape and hence theconductivity of a channel of one type of charge carrier in a semiconductor material. FETs are unipolar transistors as they involve single-carrier-type operation. The concept of the FET predates the Bipolar junction transistor (BJT), though it was not physically implemented until after BJTs due to the limitations of semiconductor materials and the relative ease of manufacturing BJTs compared to FETs at the time.HistoryThe field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925 and by Oskar Heil in 1934, but practical semi-conducting devices (the JFET) were only developed much later after the transistor effect was observed and explained by the team of William Shockley at Bell Labs in 1947. The MOSFET, which largely superseded the JFET and had a more profound effect on electronic development, was first proposed by Dawon Kahng in 1960.Basic informationFETs are majority-charge-carrier devices. The device consists of an active channel through which majority charge carriers, electrons or holes, flow from the source to the drain. Source and drain terminal conductors are connected to the semiconductor through ohmic contacts. The conductivity of the channel is a function of potential applied across the gate and sourceterminals.The FET's three terminals are:Source (S), through which the majority carriers enter the channel. Conventional current entering the channel at S is designated by IS.Drain (D), through which the majority carriers leave the channel. Conventional current entering the channel at D is designated by ID. Drain to Source voltage is VDS.Gate (G), the terminal that modulates the channel conductivity. By applying voltage to G, one can control ID.Types of field-effect transistorsThe channel of a FET is doped to produce either an N-type semiconductor or a P-type semiconductor. The drain and source may be doped of opposite type to the channel, in the case of depletion mode FETs, or doped of similar type to the channel as in enhancement mode FETs. Field-effect transistors are also distinguished by the method of insulation between channel and gate. Types of FETs are:CNTFET (Carbon nanotube field-effect transistor)The DEPFET is a FET formed in a fully depleted substrate and acts as a sensor, amplifier and memory node at the same time. It can be used as an image (photon) sensor.The DGMOSFET is a MOSFET with dual gates.The DNAFET is a specialized FET that acts as a biosensor, by using a gate made of single-strand DNA molecules to detect matching DNA strands.The FREDFET (Fast Reverse or Fast Recovery Epitaxial Diode FET) is a specialized FET designed to provide a very fast recovery (turn-off) of the body diode.The HEMT (high electron mobility transistor), also called a HFET (heterostructure FET), can be made usingbandgap engineering in a ternary semiconductor such as AlGaAs. The fully depleted wide-band-gap material forms the isolation between gate and body.The HIGFET (heterostructure insulated gate field effect transisitor), is used mainly in research now. [1]The IGBT (insulated-gate bipolar transistor) is a device for power control. It has a structure akin to a MOSFET coupled with a bipolar-like main conduction channel. These are commonly used for the 200-3000 V drain-to-source voltage range of operation. Power MOSFETs are still the device of choice for drain-to-source voltages of 1 to 200 V.The ISFET (ion-sensitive field-effect transistor) used to measure ion concentrations in a solution; when the ion concentration (such as H+, see pH electrode) changes, the current through the transistor will change accordingly.The JFET (junction field-effect transistor) uses a reverse biased p-n junction to separate the gate from the body.The MESFET (Metal–Semiconductor Field-Effect Transistor) substitutes the p-n junction of the JFET with aSchottky barrier; used in GaAs and other III-V semiconductor materials.The MODFET (Modulation-Doped Field Effect Transistor) uses a quantum well structure formed by graded doping of the active region.The MOSFET (Metal–Oxide–Semiconductor Field-Effect Transistor) utilizes an insulator (typically SiO2) between the gate and the body.The NOMFET is a Nanoparticle Organic Memory Field-Effect Transistor.The OFET is an Organic Field-Effect Transistor using an organic semiconductor in its channel. The GNRFET is a Field-Effect Transistor that uses a graphene nanoribbon for its channel.The VeSFET (Vertical-Slit Field-Effect Transistor) is a square-shaped junction-less FET with a narrow slit connecting the source and drain at opposite corners. Two gates occupy the other corners, and control the current through the slit.The TFET (Tunnel Field-Effect Transistor) is based on band to band tunneling .UsesIGBTs see application in switching internal combustion engine ignition coils, where fast switching and voltage blocking capabilities are important.The most commonly used FET is the MOSFET. The CMOS (complementary metal oxide semiconductor) process technology is the basis for modern digital integrated circuits. This process technology uses an arrangement where the (usually "enhancement-mode") p-channel MOSFET and n-channel MOSFET are connected in series such that when one is on, the other is off.The fragile insulating layer of the MOSFET between the gate and channel makes it vulnerable to electrostatic damage during handling. This is not usually a problem after the device has been installed in a properly designed circuit.In FETs electrons can flow in either direction through the channel when operated in the linear mode, and the naming convention of drain terminal and source terminal is somewhat arbitrary, as the devices are typically (but not always) built symmetrically from source to drain. This makes FETs suitable for switching analog signals between paths (multiplexing). With this concept, one can construct a solid-state mixing board, for example.A common use of the FET is as an amplifier. For example, due to its large input resistance and low output resistance, it is effective as a buffer in common-drain (source follower) configuration.。