什么是动态路由?动态路由:是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。
是基于某种路由协议来实现的。
常见的路由协议类型有:距离向量路由协议(如RIP)和链路状态路由协议(如OSPF)。
什么是静态路由?静态路由:是指由网络管理员手工配置的路由信息。
当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。
静态路由信息在缺省情况下是私有的,不会传递给其他的路由器。
当然,网管员也可以通过对路由器进行设置使之成为共享的。
静态路由一般适用于比较简单的网络环境,在这样的环境中,网络管理员易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。
什么是直连路由与非直连路由?直连路由:就是路由器自己接口上的路由条目。
与之相对的就是非直连路由,非直连路由条目包括静态、默认、动态路由等配置或学习到的其他相邻路由器上的路由条目。
路由器与三层交换机的区别?1. 主要功能不同虽然三层交换机与路由器都具有路由功能,但我们不能因此而把它们等同起来,正如现在许多网络设备同时具备多种传统网络设备功能一样,就如现在有许多宽带路由器不仅具有路由功能,还提供了交换机端口、硬件防火墙功能,但不能把它与交换机或者防火墙等同起来一样。
因为这些路由器的主要功能还是路由功能,其它功能只不过是其附加功能,其目的是使设备适用面更广、使其更加实用。
这里的三层交换机也一样,它仍是交换机产品,只不过它是具备了一些基本的路由功能的交换机,它的主要功能仍是数据交换。
也就是说它同时具备了数据交换和路由由发两种功能,但其主要功能还是数据交换;而路由器仅具有路由转发这一种主要功能。
2. 主要适用的环境不一样三层交换机的路由功能通常比较简单,因为它所面对的主要是简单的局域网连接。
正因如此,三层交换机的路由功能通常比较简单,路由路径远没有路由器那么复杂。
它用在局域网中的主要用途还是提供快速数据交换功能,满足局域网数据交换频繁的应用特点。
而路由器则不同,它的设计初哀就是为了满足不同类型的网络连接,虽然也适用于局域网之间的连接,但它的路由功能更多的体现在不同类型网络之间的互联上,如局域网与广域网之间的连接、不同协议的网络之间的连接等,所以路由器主要是用于不同类型的网络之间。
它最主要的功能就是路由转发,解决好各种复杂路由路径网络的连接就是它的最终目的,所以路由器的路由功能通常非常强大,不仅适用于同种协议的局域网间,更适用于不同协议的局域网与广域网间。
它的优势在于选择最佳路由、负荷分担、链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。
为了与各种类型的网络连接,路由器的接口类型非常丰富,而三层交换机则一般仅同类型的局域网接口,非常简单。
3. 性能体现不一样从技术上讲,路由器和三层交换机在数据包交换操作上存在着明显区别。
路由器一般由基于微处理器的软件路由引擎执行数据包交换,而三层交换机通过硬件执行数据包交换。
三层交换机在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率。
同时,三层交换机的路由查找是针对数据流的,它利用缓存技术,很容易利用ASIC技术来实现,因此,可以大大节约成本,并实现快速转发。
而路由器的转发采用最长匹配的方式,实现复杂,通常使用软件来实现,转发效率较低。
正因如此,从整体性能上比较的话,三层交换机的性能要远优于路由器,非常适用于数据交换频繁的局域网中;而路由器虽然路由功能非常强大,但它的数据包转发效率远低于三层交换机,更适合于数据交换不是很频繁的不同类型网络的互联,如局域网与互联网的互联。
如果把路由器,特别是高档路由器用于局域网中,则在相当大程度上是一种浪费(就其强大的路由功能而言),而且还不能很好地满足局域网通信性能需求,影响子网间的正常通信。
综上所述,三层交换机与路由器之间还是存在着非常大的本质区别的。
无论从哪方面来说,在局域网中进行多子网连接,最好还选用三层交换机,特别是在不同子网数据交换频繁的环境中。
一方面可以确保子网间的通信性能需求,另一方面省去了另外购买交换机的投资。
当然,如果子网间的通信不是很频繁,采用路由器也无可厚非,也可达到子网安全隔离相互通信的目的。
具体要根据实际需求来定。
什么是冲突域、广播域?广播风暴如何产生?工作站的集合,或者说是同一物理网段上所有节点的集合或以太网上竞争同一带宽的节点集合。
比如HUB上所有的端口就是冲突域,冲突域中,假设有A、B、C、D四台主机,A、B主机之间通讯,就会占用通讯线路,同样C、D两台主机也要进行通讯,他们也会占用这条通讯线路,很多时候会造成通讯同时进行,所以数据包会发生冲突。
造成电路上的信号遭到破坏。
造成数据重传严重,网速变慢。
一般来说,交换机可以分割冲突域。
广播域:网络中的一组设备的集合。
即同一广播包能到达的所有设备成为一个广播域。
当这些设备中的一个发出一个广播时,所有其他的设备都能接收到这个广播帧。
HUB和SWITCH的所有端口都是在一个广播域里,三层交换机和路由器可以分割广播域。
广播风暴:一个数据帧或包被传输到本地网段(由广播域定义)上的每个节点就是广播;由于网络拓扑的设计和连接问题,或其他原因导致广播在网段内大量复制,传播数据帧,导致网络性能下降,甚至网络瘫痪。
这就是广播风暴。
什么是VLAN?虚拟局域网(VLAN):是一种将局域网(LAN)设备从逻辑上划分(注意,不是从物理上划分)成一个个网段(或者说是更小的局域网LAN),从而实现虚拟工作组(单元)的数据交换技术。
该技术具有以下优点:(1)端口的分隔。
即便在同一个交换机上,处于不同VLAN的端口也是不能通信的。
这样一个物理的交换机可以当作多个逻辑的交换机使用。
(2)网络的安全。
不同VLAN不能直接通信,杜绝了广播信息的不安全性。
(3)灵活的管理。
更改用户所属的网络不必换端口和连线,只更改软件配置就可以了。
什么是堆叠?堆叠与级联的区别?堆叠(Stack)和级联(Uplink):是多台交换机或集线器连接在一起的两种方式。
它们的主要目的是增加端口密度。
但它们的实现方法是不同的。
简单地说,级联可通过一根双绞线在任何网络设备厂家的交换机之间,集线器之间,或交换机与集线器之间完成。
而堆叠只有在自己厂家的设备之间,且此设备必须具有堆叠功能才可实现。
级联只需单做一根双绞线(或其他媒介),堆叠需要专用的堆叠模块和堆叠线缆,而这些设备可能需要单独购买。
交换机的级联在理论上是没有级联个数限制的(注意:集线器级联有个数限制,且10M和100M的要求不同),而堆叠各个厂家的设备会标明最大堆叠个数。
从上面可看出级联相对容易,但堆叠这种技术有级联不可达到的优势。
首先,多台交换机堆叠在一起,从逻辑上来说,它们属于同一个设备。
这样,如果你想对这几台交换机进行设置,只要连接到任何一台设备上,就可看到堆叠中的其他交换机。
而级联的设备逻辑上是独立的,如果想要网管这些设备,必须依次连接到每个设备。
其次,多个设备级联会产生级联瓶颈。
例如,两个百兆交换机通过一根双绞线级联,则它们的级联带宽是百兆。
这样不同交换机之间的计算机要通讯,都只能通过这百兆带宽。
而两个交换机通过堆叠连接在一起,堆叠线缆将能提供高于1G的背板带宽,极大地减低了瓶颈。
现在交换机有一种新的技术——Port Trunking,通过这种技术,可使用多根双绞线在两个交换机之间进行级联,这样可成倍地增加级联带宽。
级联还有一个堆叠达不到的目的,是增加连接距离。
比如,一台计算机离交换机较远,超过了单根双绞线的最长距离100米,则可在中间再放置一台交换机,使计算机与此交换机相连。
堆叠线缆最长也只有几米,所以堆叠时应予考虑。
二三层交换技术有何区别?二层交换技术:传统的局域网交换机是一种二层网络设备,它在操作过程中不断收集信息去建立起它本身的一个MAC地址表。
这个表相当简单,基本上说明了某个MAC 地址是在哪个端口上被发现的。
这样当交换机收到一个以太网包时,它便会查看一下该以太网包的目的MAC地址,核对一下自己的地址表以确认该从哪个端口把包发出去。
但当交换机收到一个不认识的包时,也就是说如果目的MAC地址不在MAC地址表中,交换机便会把该包“扩散”出去,即从所有端口发出去,就如同交换机收到一个广播包一样,这就暴露出传统局域网交换机的弱点:不能有效的解决广播、异种网络互连、安全性控制等问题。
因此,产生了交换机上的VLAN(虚拟局域网)技术。
三层交换技术:三层交换(也称多层交换技术,或IP交换技术)是相对于传统交换概念而提出的。
众所周知,传统的交换技术是在OSI网络标准模型中的第二层――数据链路层进行操作的,而三层交换技术在网络模型中的第三层实现了分组的高速转发。
简单的说,三层交换技术就是“二层交换技术+ 三层转发”。
三层交换技术的出现,解决了局域网中网段划分之后网段中的子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
什么是生成树协议?生成树协议是一种二层管理协议,它通过有选择性地阻塞网络冗余链路来达到消除网络二层环路的目的,同时具备链路的备份功能。
生成树协议和其他协议一样,是随着网络的不断发展而不断更新换代的。
“生成树协议”是一个广义的概念,并不是特指IEEE 802.1D中定义的STP协议,而是包括STP以及各种在STP基础上经过改进了的生成树协议。
什么是背板带宽、交换容量、包转发率,其三者间有何关系?背板带宽:背板带宽也叫背板容量,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。
背板带宽标志了交换机总的数据交换能力,单位为Gbps,一般的交换机的背板带宽从几Gbps到上百Gbps不等。
一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。
交换容量是内核CPU与总线的传输容量,一般比背板带宽小。
采用存储转发模式的交换机,交换容量的大小由缓存(BUFFER)的位宽及其总线频率决定。
即,交换容量=缓存位宽*缓存总线频率=96*133=12.8Gbps;也有的厂家使用端口总容量的2倍来标示交换容量,交换容量=2*(n*100Mbps+m*1000Mbps)(n:表示交换机有n个100M端口,m:表示交换机有m个1000M端口)。
包转发率:转发能力以能够处理最小包长来衡量,对于以太网最小包为64BYTE,加上帧开销20BYTE,因此最小包为84BYTE。
对于1个全双工1000Mbps接口达到线速时要求:转发能力=1000Mbps/((64+20)*8bit)=1.488Mpps;对于1个全双工100Mbps接口达到线速时要求:转发能力=100Mbps/((64+20)*8bit)=0.149Mpps单位:Mpps (兆个包每秒)。