当前位置:文档之家› 变电站一体化电源分析

变电站一体化电源分析

2010年第05期(总第120期)
沿海企业与科技
COASTAL ENTERPRISES AND SCIENCE&TECHNOLOGY
NO.05,2010
(Cumulatively NO.120)变电站一体化电源分析
李昭桦
[摘要]文章针对变电站站用直流系统和通信系统共享使用统一的蓄电池组的一体化电源方案进行深入分析,提出一体化电源在实现过程中需要注意的关键问题——
—接地和蓄电池组后备时间,并给出解决措施的建议。

[关键词]变电站;电力;站用直流系统;通信电源;一体化
[作者简介]李昭桦,广东省电力设计研究院工程师,研究方向:电力系统通信设计,广东广州,510663
[中图分类号]TM63[文献标识码]A[文章编号]1007-7723(2010)05-0139-0003
一、引言
变电站内的站用直流系统和通信电源系统均
配置有蓄电池组,其维护分别由电气和通信两个
专业负责。

变电站一体化电源典型方案是取消通
信电源的蓄电池组,将站内直流电源系统、通信用
直流变换电源(DC/DC)组合为一体,共享使用站用
直流系统的蓄电池组,并统一集中监控的成套设
备。

该组合方式是以直流操作电源为核心,通信用
直流变换电源DC/DC由直流输入变换为直流输出
的电源装置,输出特性满足通信电源的要求。

它与
直流操作电源的充电装置和蓄电池组相配合,为
电站的通信设备提供电源,可以减少蓄电池组的
重复配置,提高电力通信的运维效率,节约人力维
护成本。

二、站用直流系统和通信电源
变电站直流系统由交流输入、充电装置、馈电
屏、蓄电池组、监控单元(含馈线状态监测单元)、
电压监测、绝缘监察(含接地选线)、硅降压回路、蓄电池管理单元、直流馈线网络等组成。

站用直流系统作为变电站控制负荷和部分重要直流动力负荷的电源,主要任务就是给继电保护、开关合分及控制系统、信号系统、自动装置等提供可靠的直流电源,它在变电站中是一个独立的电源,不受交流的影响,在全厂或全所失电的情况下,仍能保证控制信号、保护、自动装置等电源及事故处理工作。

站用直流系统采用不接地方式,典型的直流系统原理图如图1所示。

通信设备的直流供电系统由交流配电屏(可选)、高频开关电源、蓄电池、直流配电屏等部分组成,通信电源的连接如图2所示。

三、一体化电源的关键问题和解决措施
站用直流系统为不接地系统,通信电源为接
地系统。

一体化电源如何接地,这是技术上需要解决的问题。

站用直流系统和通信电源的蓄电池组后备时间的规定标准不同,一体化电源的蓄电池组后备时间遵循哪个标准,需要从管理和规章来分析。

本文就这两个关键问题展开分析,提出解决的建议方案。

(一)接地问题的解决
1.站用直流系统接地
当前全国变电站直流系统具有统一的规范(DL-T5044-2004)《电力工程直流系统设计技术规程》[1]指导,直流电源系统采用不接地方式。

站用直流系统为不接地系统,直流系统发生一点接地,不会产生短路电流,亦可继续运行;但是必须及时查找接地点并尽快消除接地故障,否则当发生另一点接地时,就有可能引起信号装置、继电保护及自
图2通信电源连接示意图
图1站用直流系统原理图
139
动装置、断路器的误动作或拒绝动作,有可能造成直流电源短路,引起熔断器熔断,或快分电源开关断开,使设备失去操作电源,引发电力系统严重故障乃至事故。

因此,不允许直流系统在一点接地情况下长时间运行,必须加强在线监测,迅速查找并排除接地故障,杜绝因直流系统接地而引起的电力系统故障。

2.通信电源接地
变电站的通信电源采用联合接地和等电位接地系统,它的功能如下:
(1)减少通信设备单元与接地系统的电位,以保证安全。

(2)防止电气设备事故时故障电路发生危险的接触电位并使故障电路开路。

当市电线路偶与通信设备或电缆相接触时,使市电线路立即断电,减小危险并减少损坏。

(3)保证系统电磁兼容的需要,保证通信系统功能不受干扰。

(4)为使用大地作回流体的信号发送系统提供低阻接地回路。

(5)提高防雷及过电压保护的功能,减低市电线路和通信电缆上的雷电和其他冲击源所引起的损坏,以及提供通道将电缆屏蔽层上进入通信局(站)的冲击电流转移入地。

(6)将蓄电池的一个正极接地,有利于防止用户电缆金属外皮绝缘不良时引起的串话,减少用户电缆金属芯线的电腐蚀。

3.接地系统解决措施
为实现接地系统与不接地系统的隔离,确保
相互之间的故障隔离,根据变压器原理,在DC/DC 模块上采用反向变压器,相互隔离各自的接地系统。

一体化电源接地系统原理如图3所示。

若DC/DC 模块被击穿,导致站用直流系统接地,由于直流系统大都配置接地监测系统,它将检测出接地,维护人员可在短时间内解除问题。

此类故障接地系统理论上不会影响站用直流电的可靠性。

(二)蓄电池后备时间的解决
站用直流系统的每组蓄电池容量选取按全站事故放电不小于2小时计算;当两组蓄电池正常均分站内全部负荷时,事故放电时间不小于4小时。

在通信电源方面,各规范、规定或文件中规定相关对通信电源的后备时间不一致,有4小时、8小时、12小时等各种规定,详见表1:
图3DC/DC 一体化电源接地系统图
表1
参考规范附表
根据广东电网公司的变电站统计和典型设计
数据,500kV 站通信电源按照72A 计算,最大负荷为72A ×50V=3600W ,变电二次设备经常性负荷按照9520W 计算,长期事故负荷20265W ;220kV 变电站负荷约为39A ,负载功率约为39A ×50V=1950W 。

变电二次设备经常性负荷按照5025W 计算,长期事故负荷12025W ;典型110kV 变电站通信设备功率约为700W ,变电二次设备经常性负荷按照2665W 计算,长期事故负荷6665W 。

本文对500kV 站、220kV 站、110kV 站点分别按照蓄电池组后备时间为12小时、4小时,计算电源一体化实施后,站用直流系统的配置变化如表2所示:
140
可见,不同的后备时间对一体化电源影响重大,按照4小时后备时间的方案,将通信负载加入站用直流系统的经常性负载中,则一体化电源的配置跟现有站用直流系统的配置变化不大,实际操作具有较高可行性;如果将站用直流系统按照12小时后备时间设计方案,其500kV站点的蓄电池容量增加了100%以上,将对机房的承重和空间带来一定的考验,其经济性也是一大问题,站用直流系统并不需要长达12小时的后备时间。

因此,管理部门制定统一、合理的标准,将是一体化电源实施的重要基础。

四、结论
本文针对变电站一体化电源的实现关键要点进行了分析,对接地和蓄电池组后备时间两大问题给出了解决建议。

变电站电源一体化是对变电站通信电源的一次创新性改革,已在广东部分地区的110kV站点试行,在实践中不断检验。

[参考文献]
[1]DL/T5044-2004电力工程直流系统设计技术规程[S].
2004.
表2一体化电源方案配置对比表
(上接第144页)客户,从而可以减少n-1根零线的安装(n为集装箱内电能表数量)。

这样不仅可以有效地降低资金投入,同时还可以减少施工的工程量,有利于加快工程进度,美化安装工艺。

但是,这些显而易见的好处给今后的计量、安全管理留下了诸多的安全隐患。

当计量箱内客户的电能表零线进线端或电能表内部零线接线一旦出现接触不良时,由于电能表的零线只有进线,而未安装出线,客户使用的零线是共用零线,并未和自己所使用的电能表构成完整的回路,其直接表现是客户照常用电,电能表的计量不能正常进行,甚至严重失准或停走。

由于客户的用电性质和特点,使得电力管理人员很难及时发现问题和查清故障原因,此类现象在个别县已经发生多次。

因此,为确保电能表的计量精度和客户的用电安全,应该在二期农网整改期间严把农网整改施工工艺,严格按照电能表的标准接线,即表尾端子1接电源相线的进线,表尾端子2接相线的出线到客户,表尾端子3接电源零线的进线,表尾端子4接零线的出线到客户的方式安装接线,严禁使用共用零线的方式进行装表接电。

五、结语
配电网是电力供应的末端环节,其安全可靠的运行直接影响到千家万户的生活。

合理的配电网规划是配电网能够安全、优质、高效运行的前提。

配电网络作为国家的基础设施,进行大规模建设和改造是符合国家和社会的整体利益的。

通过科学的中低压配电网络规划,配电网络将逐步形成供电可靠、经济合理的网络结构,为供电企业乃至整个社会带来多方面的效益。

141。

相关主题