当前位置:文档之家› 卫星通信网络建立、入网验证和系统测试

卫星通信网络建立、入网验证和系统测试


TL 1 TN 1 TA2 LA2
To TL
(6.4)
调节A1的衰减量,使输出M的指示仍为M1, 设此时LA1=L2,则
由式(6.3)和式(6.5)可得
TL Tr M1 Kc L2 r TL Tr L2 Y1 TA Tr L1
(6.5)
减量为LA1=L1,则
TKc M1 L1
当放电管“点火”时,管内便产生放电现象,并因此产生
附加的噪声输出,设它的噪声温度为 TP,则这时低噪声放大器
输入端的噪声温度为
TF=TP+T
第6章 卫星通信网络建立、入网验证和系统测试
这时重新调整 A1 的衰减量,使输出指示仍为 M1 ,设此时
LA1=L2,则
第6章 卫星通信网络建立、入网验证和系统测试
6.3 验证测试项目与测试方法
6.3.1 G/T值的测量
目前, 普遍采用的测量方法有三种:射电星法、 信标塔法
和卫星法。 利用能发射宽带无线电波的天体 (简称射电星)作为 信号源的测量方法称为射电星法,该方法能直接测量 G/T 值, 而信标塔法和卫星法则通过分别测量天线接收增益和系统噪声 温度来确定G/T值。在这些方法中,射电星法精度较高,而卫星
于是由式(6.11)和式(6.13)可得
TF K c M1 L2
T L1 Y TF L2
第6章 卫星通信网络建立、入网验证和系统测试
天线增益 Gmax - 3 dB 下降 3 dB
1
D
30 dB 典型值
G( )

Gmax
3 dB
- 1 O
1

3 dB
半功率波束宽度
(a)
(b)
图 6.1 (a) 用极坐标表示的天线方向图; (b) 用直角坐标表示的天线方向图
第6章 卫星通信网络建立、入网验证和系统测试
极化波是完全隔离的,即如果接收天线只与一种极化波相匹配,
那么当它接收两个正交极化波时,只能吸收与其匹配极化波的 全部功率,而抑制另一个正交的极化波。
实际上,由于极化波的纯度不高或者由于传输路径的去极
化效应,总会使传输的单一极化波分解成一个与原极化波方向 相同的主极化波分量和另一个正交的交叉极化分量。
控制中心 (TOCC) 及相应的地球站,此地球站已完成 SSOG 开
通测试准备。 TOCC 协调好所有参加测试的各方之后,发布 SSOG开通测试的安排和测试步骤。
开通测试完毕后, 要将开通测试结果报向TOCC和相关
地球站,并抄送邮电部电信总局。此后, 地球站可入网投入
业务运行。
第6章 卫星通信网络建立、入网验证和系统测试 4. 专用网地球站入网的一般程序 1) (1) 地球站应具有改变射频发射频率和功率以及改变接收载 波频率的能力,以适用于不同的频率计划,同时有利于进行干 扰协调。 (2) 地球站应保证不因为载波电平、频率、极化等变化, 而危害到卫星的空间段资源。 (3) 进入卫星网络运行的地球站,其传输计划需得到卫星空 间段主管部门的同意,以保证运行参数符合规定,干扰电平在 可接受的范围之内。 (4) 进入卫星网络运行的地球站, 需经过验证测试, 符合 要求才能正式运行。
1

TA Tr TA Tr M1 K1K2 Kc L1 L1
(6.3)
式中,Kc=K1K2为接收机 1 的增益。
第6章 卫星通信网络建立、入网验证和系统测试
(3) 转换SW使接收机 1 与低温负载连接。首先调节A2的衰
减量, 使LA2=1。此时,换算到衰减器A2输出端的等效噪声温度 为
之间的干扰;而轴比VAR越接近1,则极化纯度越高,极化隔离
度也就越高。因此,为保证优质的卫星通信,INTELSAT对新建 地球站天线要求达到的轴比为VAR≤1.06 (0.5 dB),相应的极化隔
离度XPI≥30.7 dB。
第6章 卫星通信网络建立、入网验证和系统测试 4. 天线或波束的可控性 当地球站的仰角不小于 5° 时,自动或手动控制可以改变
于是由式(6.3)和式(6.8)可得
(6.8)
To Tr L3 Y2 TA Tr L1
(6.9)
第6章 卫星通信网络建立、入网验证和系统测试 这样由式(6.6)和式(6.9)可求得
To TL T TA Tr Y2 Y1
(6.10)
通常取To=290K;TL为低温负载噪声温度,由冷却机决定,如氦 冷却系统可达10~20K;Y1、Y2可由A1的衰减量L1、L2和L3算出。
此外,还有一种不用低温负载测量接收系统噪声温度的方
法,叫做噪声相加法,如图6.3所示。这种方法对于非标准站和 小型站特别适用。因为在这些站一般没有低温负载,采用前一 种方法有一定的困难。
第6章 卫星通信网络建立、入网验证和系统测试
天线
馈线系统 低噪声 放大器 定向耦合器 放电管 衰减器 A 1 dB K1 K2 M
法方便易行但精度不理想;利用信标塔测量时,需要有合适高
度的山头或特制的信标塔。
第6章 卫星通信网络建立、入网验证和系统测试 1.
天线
馈线系统 SW TA 低噪声 Tr (接收机2) TN To 衰减器 dB A 2 TL 低温负载 放大器 K1 衰减器 A 1 dB (接收机1) K2
M
图 6.2 接收系统噪声温度的测量电路
天线的指向,与轨道上任何地球静止卫星相连通。
5. 跟踪方式 地球站应配备手动和自动两种跟踪方式,有时还要求具有 程序跟踪方式。 6. 系统带宽包括馈源系统、接收系统和发射系统的带宽。通 常, 系统带宽要达到500 MHz。
第6章 卫星通信网络建立、入网验证和系统测试 7. 有效全向辐射功率(EIRP) 为达到足够而稳定的 EIRP ,要求地球站发射机能发射较大 的射频信号功率,并且要非常稳定,通常要求此功率为几百瓦 到十几千瓦, 变化在额定值的±0.5 dB以内。 8. 载波频率容限 为保证卫星转发器频带的有效利用,减小互调噪声,地球 站所发射频率必须很精确。对于SCPC/PSK和电视载波, 射频 容限为±250 kHz。 9. 射频带外辐射 每个地球站的带宽外 EIRP 可引起对卫星转发器和其它通信 系统的干扰,因此必须对射频带外辐射进行限制。通常要求带 外总的有效全向辐射功率应小于 4 dB/4 kHz。
第6章 卫星通信网络建立、入网验证和系统测试
6.2 地球站的必备工作特性
1. 品质因素(G/T值) G/T 值是衡量一个地球站性能优劣的主要指标,其定义为 天线接收增益与系统噪声温度之比。 G/T 值的大小直接关系到 卫星接收性能的好坏,G/T值越大,系统质量就越好。
第6章 卫星通信网络建立、入网验证和系统测试 2. 天线方向图 描绘以天线为中心,空间辐射电磁场能量分布情况或辐射 场在空间某方向上能量集中程度的图形,称为天线方向图。某 天线机械对称轴截面的方向图如图 6.1所示(图6.1(a)曲线上某点 到天线中心的距离表示天线在该点对应方向上的增益)。可见, 方向图由许多波束组成,并且,沿天线对称轴方向有最大的增 益 Gmax ,而当与轴向偏离角度 α 时,增益减小。对应最大增益 的波束称为主波束(或主瓣), 而其它波束称为旁瓣。以主波束 增益峰值向轴两侧各下降3 dB的半功率点宽度,称为波束宽度。 天线方向图常常以图6.1(b)所示的形式表示。
局)提交地球站入网申请。 申请表按有关要求填写。 当 INTELSAT 审查了申请,并认为全部数据都已提供且申 请书也符合规格, 就批准该地球站入网。此时, INTELSAT将根 据地球站的标准和业务类型(国际/国内,固定/车载)等特征,分
配给一个地球站代号,这样该地球站就成为 INTELSAT 通信系
第6章 卫星通信网络建立、入网验证和系统测试 交叉极化隔离度XPI定义为极化波在本信道产生的主极化分 量与在另一信道产生的交叉极化分量之比,常用dB表示。椭圆 极化波的轴比VAR定义为长轴与短轴之比。XPI与VAR的关系为
VAR 1 XPI 20 lg dB VAR 1
(6.1)
在波束重叠覆盖区,必须提高极化隔离度,才能减小两信道
第6章 卫星通信网络建立、入网验证和系统测试
第6章 卫星通信网络建立、入网验证和系统测试
6.1 新地球站入网运行程序
6.2 地球站的必备工作特性
6.3 验证测试项目与测试方法
第6章 卫星通信网络建立、入网验证和系统测试
6.1 新地球站入网运行程序
1. 入网申请与批准
新建地球站要向 INTELSAT( 在我国要通过原邮电部电信总
第6章 卫星通信网络建立、入网验证和系统测试 2)
(1) 用户与卫星主管部门(公司)相互交流情况及资料,用户
提供建网及地球站的有关技术资料;卫星公司提供卫星及转发 器的有关参数。 (2) 用户根据卫星参数进行链路预算,预算结果报卫星公 司复核。其目的是更有效地利用卫星转发器,并且保证不会产
生有害干扰。
当前,INTELSAT和许多国家都对地球站天线旁瓣
电平作了规定。旁瓣电平实际上是指该旁瓣所在空间角θ位置 的天线增益G(θ)。例如,CCIR提出,对D/λ≥150的天线, 必须 满足
29 25lg dB Gi ( ) 10dB
的地球站天线的设计目标是
Gi(θ)=29-25 lg θ dB
(1°<θ≤48°) (48°<θ≤180°)
其中,D为天线口面直径,λ为信号波长。INTELSAT对D/λ≥150
(1°<θ≤48°)
第6章 卫星通信网络建立、入网验证和系统测试
3. 地球站的极化和轴比
在卫星通信中广泛采用频率再用技术,即在波束重叠的覆盖 区可以使用同一频率的两个正交极化波。如线极化时,一个波 束用垂直极化波,而另一个用水平极化波;圆极化时,一个波 束用左旋圆极化,而另一个用右旋圆极化。在理论上, 两个正交
相关主题