第五章瓦斯抽采系统和设备选型及布置第一节矿井瓦斯抽采系统选择一、瓦斯抽采系统选择的原则1、开采高瓦斯矿井,应建立地面固定瓦斯抽采系统;2、地面固定瓦斯抽采系统设计抽采瓦斯量应不小于2m3/min。
3、分期建设、分期投产的矿井,抽采瓦斯工程可一次设计,分期建设、分期投抽。
抽采瓦斯站的建设方式,应经技术经济比较确定。
一般情况下,宜采用集中建站方式。
当有下列情况之一时,可采用分散建站方式:1)分区开拓或分期建设的大型矿井,集中建站技术经济不合理;2)矿井抽采瓦斯量较大且瓦斯利用点分散。
3)一套抽采瓦斯系统难以满足要求。
4、地面固定瓦斯抽采系统宜根据下列具体情况分别布置高负压或低负压瓦斯抽采系统:1)采用采空区抽采等抽采方法的矿井宜采用低负压抽采系统。
2)采用本煤层抽采、边掘边抽等抽采方法的矿井,宜采用高负压抽采系统。
3)采用上述抽采方法的矿井,且矿井设计抽采量不小于10m3/min时,宜分别建立高、低负压抽采瓦斯系统。
二、瓦斯抽采系统选择本矿井为高瓦斯矿井,根据GB 50471-2008《煤矿瓦斯抽采工程设计规范》及AQ 1055-2008《煤矿建设项目安全设施设计审查和竣工验收规范》、《煤矿安全规程》,该矿必须建立地面永久抽采瓦斯系统。
抽采系统服务年限内开采C8煤层时采用工作面采前预抽、工作面边采边抽、掘进工作面先抽后掘和半封闭采空区瓦斯抽采、全封闭采空区瓦斯抽采的抽采方法。
按照《煤矿瓦斯抽采达标暂行规定》(安监总煤装〔2011〕163号)文要求,设计采用高、低负压两套抽采瓦斯系统。
矿井开采C8煤层预抽C9煤层时设计抽采量为min,开采C9煤层预抽C8煤层时设计抽采量为min。
低负压系统瓦斯最大抽采量为抽采C8煤层全封闭采空区及半封闭采空区时的瓦斯抽采量,合计为min。
其中半封闭采空区瓦斯抽采量为min,全封闭采空区瓦斯抽采量为min。
高负压系统瓦斯最大抽采量为 m3/min。
第二节抽采管路布置及选型计算矿井现有2台2BE1 303-0型瓦斯抽采泵,电机功率90kW,井下管路均采用PVC-KM型煤矿井下用聚氯乙烯管,主管Φ225×,支管Φ160×。
一、抽采管路系统选择(一)管网系统管网系统由三部分组成:1、主管,抽采和输送全矿井瓦斯管路;2、分管,抽采和输送一个或几个采区的的瓦斯管路3、支管,抽采和输送一个采、掘工作面的瓦斯管路;4、管网附属装置,包括:1)测压、测流量和调节装置:用于调节、控制和测量管路中瓦斯浓度、流量和压力等参数;2)安全装置:用于安全防护,包括接地保护、放水器等装置;3)安全监测监控装置:监测瓦斯抽采系统运行状况并进行相应的控制。
(二)矿井抽采管路系统布置根据以上管路系统选择原则,并结合矿方接替采区巷道布置,设计采用在回风斜井工业场地附近地面抽采站安设抽采管路,投产初期瓦斯抽采管路系统布置详见图:W/2二、抽采管路管径计算及管材选择(一)瓦斯管径计算根据抽采管道服务的范围和所负担抽采量的大小,其管径按下式计算:/V)1/2D=(Q混式中D——瓦斯管内径,m;V——管道中混合瓦斯的经济流速,m/s;经济流速可取5~12m/s。
按照大管径流速取大值、小管径流速取小值,管路系统较长者流速取小值、管路系统较短者流速取大值的原则选取经济流速。
Q混——管内混合瓦斯流量,m3/min;按照开采各类管道的流量应按照其使用年限或服务区域内的最大值确定,并应有~的系数。
备用系数取。
抽采瓦斯管径计算结果见表5-2-1和表5-2-2。
表5-2-1 低负压系统抽采管径计算表表5-2-2 高负压系统抽采管径计算表(二)管材选择瓦斯管的管材尽量采用国家定型产品,且必须取得“MA ”标志。
目前常用的管材有无缝钢管、PVC-KM 煤矿井下用聚氯乙烯管等。
管材选择一般考虑运输、安装、使用、维修、防腐、防碰撞及投资等因素。
由于PVC 管材比重仅为钢管的1/,且其使用寿命、安全性能、维护和防腐等方面的优势远远高于钢管,故本设计井下瓦斯抽采管道均选用PVC 矿用抗静电阻燃复合管。
地面采用螺旋焊接钢管,低负压采用Φ325×型螺旋焊接钢管,高负压采用Φ377×型螺旋焊接钢管,螺旋焊接钢管采用法兰连接。
并涂刷防锈漆防腐。
(三)抽采管路阻力计算抽采管路阻力损失计算应选择抽采系统服务年限内一条最长的抽采管路进行计算,开采C 19b 煤层(三盘区)时瓦斯管路最长,所以低负压最长管路按地面至回采C 19b 煤层生产采空区计算,高负压最长管路按地面至C 19b 煤层工作面回风巷计算。
抽采管路总阻力包括直管摩擦阻力和局部阻力; 直管摩擦阻力可用下式计算:QdK L h f 2508.9∆=式中:H —阻力损失,Pa ;L —管路长度,m ; Q —管路流量,m 3/h ; d —管路内径,cm ;K 0—系数,根据管径不同选取;Δ—混合瓦斯对空气的相对密度,kg/m 3。
其中△按下式计算:22211r n r n r +=∆式中:r——瓦斯密度,取0.715kg/m3;1——混合瓦斯中瓦斯浓度;n1——空气密度,取1.293kg/m3;r2n——混合瓦斯中空气浓度。
2局部阻力可用估算法计算,一般取摩擦阻力的10%-20%。
抽采管路阻力损失计算结果见表5-2-3和表5-2-4。
表5-2-3 低负压抽采管路直管阻力计算表表5-2-4 高负压抽采管路直管阻力计算表四、抽采管路敷设及附属设施。
管路联接是瓦斯抽采管网系统中重要环节,是系统中主要漏气点。
PVC-KM煤矿井下用聚氯乙烯管其连接采用扩口承插、法兰、丝扣等方式,安装、拆卸、修复快捷方便。
本设计主管采用法兰联接,支管和干管均采用扩口承插粘接方式连接或者R扩口连接方式,移动部分采用快速接头连接。
地面管路采用法兰盘连接。
管路敷设及安装要符合下列要求:1、抽采管路通过的巷道曲线段少、距离短。
转弯时不要转急弯。
2、井下瓦斯抽采管路包括风井管路、上山管路、回风巷管路、工作面顺槽管路等,风井管路沿井筒敷设,采用悬臂吊挂安装方式或打支撑墩;上山、回风巷管路管路沿巷道敷设,采用吊挂或打支撑墩沿巷道底板敷设;工作面顺槽管路采用支撑墩沿巷道底板敷设,其中采用吊挂安装的管路,其高度不小于1.8m,支架间距3~6m,并固定在巷道壁上,与巷道壁的距离应满足检修要求;抽采瓦斯管件的外缘距巷道壁不宜小于0.1m。
3、地面瓦斯管路敷埋地铺设时管道采用涂刷沥青防腐,且必须在表土冻结深度以下,瓦斯管道距建筑物5m以上,距动力电缆1m以上,距排水沟1.5m以上。
4、主管、干管及其与钻场连接处应装设瓦斯计量装置。
5、抽采钻场、门框架、低洼、温度突变处及沿管路适当距离(间距一般为200m~300m,最大不超过500m),应设置放水器。
6、在抽采管路的适当部位应设置除渣装置和测压装置。
7、抽采管路分岔处应设置控制阀门,阀门规格应与安装地点的管径相匹配。
8、主管上的阀门应设置在井下主要分区点,确保每点进行撤安管路时,不影响其它区域的正常抽采,并便于人员操作。
9、抽采管路应根据巷道保持一定的坡度,一般不小于1%的流水坡度。
10、凡遇跨越有运输任务的巷道时,抽采管路安装设置门框架;门框架设置要求以不影响行车、行人为准。
11、管路要托挂或垫起,吊挂要平直,拐弯处设弯头,不拐急弯。
管子的接头接口要拧紧,用法兰盘连接的管子必须加垫圈,做到不漏气、不漏水。
12、在倾斜巷道中,管路应设防滑卡,其间距可根据巷道坡度确定,对28°以下的斜巷,间距一般取15m-20m。
13、瓦斯管路系统安设完毕后,应对管路系统的气密性进行检查,可采用压缩空气试压,其压力不小于。
并采取防腐蚀、防砸坏、防带电及防冻等措施。
14、通往井下的抽采管路应采取防雷措施。
15、抽采瓦斯管路外部涂红色以示区别。
(二)管路附属装置瓦斯管路的附属装置,大致分为两大类:一类是用来调节控制瓦斯压力和流量的,另一类是有关安全监控方面的。
1、钻孔与管路的连接装置瓦斯管路的连接装置,包括管路弯头、自动放水器、孔板流量计和高压胶管等。
封孔管与管路弯头、孔板流量计、止回阀等连接,再通过接头与铠装胶管连接,胶管另一端通过接头与瓦斯管三通上的阀门连接,构成了瓦斯抽采系统的开端。
瓦斯管上连结自动放水器,及时放出积聚的水分。
2、阀门在瓦斯主、干管、钻孔联接装置以及认为需要的地点,都必须设置阀门,用于调节各个抽采区、各个钻孔的抽采量及瓦斯浓度,同时也可以调节、控制和平衡各地点、各管路系统上所需要的压力。
另外,当修理和更换瓦斯管,以及联接或拆接钻孔装置时,可以关闭阀门,切断通路。
阀门型号根据使用地点和管径大小而确定,一般抽采点由于管径小选用闸阀,主、干管可选用外形尺寸较小的蝶阀,钻孔口选用逆止阀防止瓦斯流倒流。
阀门必须是取得“MA”标志,且适用于煤层瓦斯气的阀门。
3、测压嘴(孔)测压嘴即测定管路中瓦斯流的压力和瓦斯管路中气体取样的小孔,在管路安装以前,预先安装上。
在瓦斯主管、支管和钻孔联接装置上都应设置。
测压嘴不宜过大过长,一般不超过30mm,其直径大约4~10mm。
平时,可用一头捆扎的细胶管套紧,确保与管外空气隔绝。
4、管路放水器在瓦斯抽采时,煤层中部分水分随瓦斯气流被抽出。
管路在敷设中有一定的倾斜角度,管中不断有水流向管路中的低洼处,影响瓦斯流动。
管路中需每200~300m、最长不超过500m的低洼处安设一放水器,及时将管中积水放出。
放水器有人工和自动两种放水器。
为了提高人员效率,选用CWG—FY型负压自动放水器。
该放水器主要技术参数为:压力范围0~;放水速度7L/min;外形尺寸 300×300×410mm;重量25kg;5、流量计在瓦斯管网中的主管、干管和支管上均安装流量计,通过其流量的测定,可以掌握每个瓦斯区域的瓦斯流量情况,反映煤层瓦斯涌出规律和抽采效果。
流量仪表按作用原理划分为面积式流量计、差压式流量计、流速式流量计和容积式流量计。
我国煤矿瓦斯抽采使用最广泛的是节流式变压降法中径距取压的孔板流量计,其原理是当气体通过事先校正过的节流装置(即孔板)时,产生压力降(或压差),测出此压力差即可换算出通过的气体流量。
设计选用孔板流量计进行计量,选用上游侧取压孔距孔板为D,下游侧取压孔距孔板为D/2的标准孔板(其中D代表抽采管直径)。
(1)孔板流量计其适用条件孔板圆孔直径d≥12.5mm;管道直径50≤D≤760mm;直径比≤β=d/D≤;雷诺数1260β2D≤Reo≤108(2)使用孔板流量计的管道条件和安装要求①孔板上游侧的测量管长度为10D,下游侧的长度为4D;②测量管内表面应清洁,无凹陷和沉淀物,其相对粗糙度K/D应少于或等于;③孔板上、下游所需直管长度不得小于相应的最小值;④测量管长度之外的直管段内表面的相对粗糙度K/D小于或等于,但也允许使用相对粗糙度更高一些的管子;⑤在测量管中安装孔板时,开孔轴线与测量管轴线同轴,孔板上游侧端面与管道轴线垂直,垂直度小于±1%。