表10-3 GMT8350型350T 吊车起重性能
表10-4 KMK6200型
220T 吊车起重性能
表
㈠吊车吊装能力验算(以1#盾构机为例) (1)350T 吊车能力验算:
1)盾构切口环两部分相等,重量均为28T 。
设350T 吊车单机提升,所受的负荷为F ’,则)('1q Q K F +⨯=
式中1K —动载系数 —,此处取 Q — 切口环下半部重量为28T q — 吊钩及索具的重量,单机吊装时,一般取
所以
T q Q K F 272.34)2802.028(2.1)('1=⨯+⨯=+⨯=
对照350T 吊车的起重性能表可以看出,只要吊车的工作半径小于12m 完全能满足前体吊
装施工作业要求(见吊车站位图)。
2)刀盘驱动部分的重量为72T 。
设350T 吊车单机提升该部分,所受的负荷为F ’,则
)('1q Q K F +⨯=
式中1K —动载系数 —,此处取 Q — 驱动部分的重量为72T q — 钩头及索具的重量,取 所
以
T
q Q K F 128.88)7202.072(2.1)('1=⨯+⨯=+⨯=<89T
对照350T 吊车的起重性能表可以看出,只要吊车的工作半径小于12m 就能满足施工作业要求。
3)螺旋输送机重量为20T 。
设220T 吊车单机提升这一部分,所受的负荷为F ’,则
)('1q Q K F +⨯=式中
1K —动载系数 —,此处取
Q —螺旋输送机的重量为20T q —钩头及索具的重量,单机吊装时,一般取
所
以
T T q Q K F 54.444.22)2002.020(1.1)('1<=⨯+⨯=+⨯=
对照220T 吊车的起重性能表可以看出,只要吊车的工作半径小于12m 可满足施工作
业要求(吊车站位图)。
4)盾构支撑环上下部分,总重量为90T 。
设350T 吊车单机提升这一部分,所受的负荷为F ’,则)('1q Q K F +⨯=
式中1K —动载系数 —,此处取 Q —支撑环的总重量为90T q —取钩头及索具的重量为 所
以
T
q Q K F 16.110)9002.090(2.1)('1=⨯+⨯=+⨯=<111T
只要吊车的工作半径小于10m ,可满足
施工作业要求。
通过上述验算,确认350T 吊车可以满足盾构主机组装过程中的吊装要求(见吊车站位图)。
5)盾构后配套设备,重量最重的一件为20T 。
设220T 吊车单机提升这一部分,所受的负荷为F ’,则)('1q Q K F +⨯=
式中1K —动载系数 —,此处取 Q —后配套设备的重量为20T q —取钩头及索具的重量为 所
以
T
T q Q K F 4.5444.22)2002.020(1.1)('1<=⨯+⨯=+⨯=
只要吊车的工作半径小于12m ,可满足施工作业要求。
通过上述验算,确认220T 吊车可以满足盾构主机组装过程中的吊装要求。
(2)索具工作能力的验算:
进行盾构吊装时,选用4个吊装索具采用专用40T 吊装带4根长,合计吊装能力满足设备吊装要求。
由于盾构机主机及后配套中,驱动部分最重,其重量为90T ,吊点间的距离为2*,所以350T 吊车在单独作业起吊驱动部分,吊
装带的受力最大。
此时,设每根吊装带承受
的负荷为F ,
则
T
T F 409.22))5.864.1(cos(arcsin 490<=÷÷÷=
因此该型号的吊带是足够的,可以使用。
(3)“U ”型卡环工作能力的验算: 此次吊装盾构机及后配套台车,选用了4个55T 的巨力“U ”型卡环。
连接台车的起吊吊耳与吊带,同样以主机驱动部分为例,设每个卡环所承受的负荷为H ’,则
2'1÷⨯=Q K H
式中 1K —动载系数 取1.11=K
Q —盾构机支撑环部分的重量 90T
则
T T Q K H 555.254901.12'1<=÷⨯=÷⨯=因
此所选用的4个该型号“U ”型卡环工作能力是足够的,可以使用。
㈡盾构机与基座的滑动计算
盾构始发基座的摆放与水平线成%的角度,在组装过程中,为了防止在没有焊接防滑块的这一段时间里,盾构部件可能会沿盾构基座产生滑动位移,必须作出验算后才可以确定。
盾构主机前体和驱动部分总重量为128t ,基座对前体的支撑力为
T tg 7.112))1000\3(cos(1281=⨯-,前体与支撑
架的摩擦系数为,使前体滑动移动的推力为f=128×=,向下的滑动力为
T T tg 2.1971.2)1000/3(sin(1281<=⨯-,因此,
前体在基座上不会滑动,为了施工安全,用两个5t 的手扳葫芦将前体牵引着即可。