传感器灵敏度自动测量系统摘要:换能器从名字上来说就是完成能量转换的器件,而水声换能器则指完成声与电之间转换的器件,水声换能器是声纳的重要总称部分,分为发射换能器和接收换能器,接收换能器常称水听器,是声纳的水下部分,一个换能器的优劣直接影响声纳性能,现在换能器主流是压电陶瓷换能器。
该论文主要讲述了一套基于用信号源、发射换能器、压电陶瓷传感器、示波器、GPIB总线和PC个人计算机组成的自动测量系统,信号源产生标准正弦信号声波,该声波在均匀声腔水介质中传播并作为压力源,标准传感器和被测传感器同时接收波动声压,用示波器测出两传感器的输出电压,并将输出电压通过GPIB总线传输到个人计算机上,通过一系列计算推算出被测传感器的灵敏度。
实验测试了不同频率下水听器灵敏度及不确定度的分析。
关键词:换能器;灵敏度;不确定度1.概论1.1 概述地球表面积的71%是海洋,海洋里蕴藏着丰富的生物和矿物质资源,是人类今后生存和发展的第二个空间。
当今各国都在努力加强海军建设和大范围地开发海洋事业。
声纳这一水下探测设备成了开发海洋的重要帮手,更是海军和民用航海事业不可缺少的组成部分。
人们比喻声纳设备是舰船的水下耳目,换能器及其基阵则可谓之耳目的鼓膜和瞳孔了。
由于电磁波在水下传播衰减极快,探测距离甚微,因此发现和测量水下目标,目前仍主要采用声纳。
声纳设备的功能,就是收听水下有用信号并把它转变为电信号以供视听;或者自身产生一个电信号再转变为声信号在水介质中传播打到目标反射回来接收之,再转变为电信号供收听或观察,由此可以判断水下目标的方位和距离。
在这个水下电声信号的转换过程中的关键设备就是水声换能器或是换能器阵。
目前,水声换能器已经普遍地应用到工业、农业、国防、交通和医疗等许多领域。
其中包括以下几种:(1)在测深方面的应用:为保证航行安全,无论是军舰或是民船都要安装测深声纳;专门的航道检测船只都配备精度高、功能齐全的测深仪。
根据测深深度的不同,测深换能器的频率和功率也相差甚远。
以频率范围在10kHz~200kHz的较多,功率从数瓦到数十千瓦不等,其中,高频小功率用于内河或浅海,低频大功率用于远洋、大深度。
对这类换能器的要求是波束稳定、主波束锐。
(2)在定位和测距方面的应用:测量航船对地的航行速度,大多采用多普勒声纳,利用四个性能相同的换能器分别排列与龙骨相垂直的左右舷方向上。
一般工作频率在100kHz~500kHz。
(3)在海洋考察和海底地层勘探方面的应用:海底地质调查主要采用低频大孔径声纳。
拖曳式声纳是当今装在活动载体上最大尺寸的声学基阵,作用距离也最远。
水中成像方面,通常采用高频旁视声纳,在船底左右舷对称地沿龙骨平行方向装两个直线基阵,各自向海底发射扇形指向性声束,然后接收来自海底的反射波,由于海底凹凸不平反射波强度有别,在显示图像上就会出现亮度不同的图像,因为工作频率较高,声信号衰减较快,作用距离不远,现在试验的频率范围为数十千赫到500千赫。
1.2 开展水声换能器测试方法研究的意义在水声技术研究和应用中需要用到声压、声强和声功率等基础的水中声学量,水声量值的准确与否至关重要,不仅关系到水声科学研究的准确性,而且也关系到水声技术装备性能优劣和质量高低的检定和评价,开展水声换能器测试方法研究工作就是为了再现水声基本量,确保水声量值的准确一致。
计量具有传递特性的,它是以传递量值为目的的测量。
而测试通常是无传递特性的,它是以确定某种产品技术指标和性能或定量描述某物理现象为目的的测量,该论文就是主要测试水声换能器接收器的灵敏度。
1.3 水声换能器测试方法现状水声换能器测试方法的典型代表是比较法,由于此法所用仪量仪表少、测量步骤少、测量程序简单,因而产生误差的来源要少一些,所以在水声测量中,此法应用的比较广泛,当此法只采用一个标准换能器进行比较时,其校准精度要比参考标准的原校准精度要低一些,并且在实践中,还可检查出所用的标准换能器是否失效,在此校准中,通常采用标准水听器作比较,而尽量不用标注发射器作比较。
1.4 本文的主要研究内容本文主要针对水声换能器的二级校准方法及比较校准法,通过由信号源、示波器、功率放大器、水声换能器及PC组成的自动测量系统实现对水声接收器的灵敏度及其不确定度的测量分析。
2.水声换能器测量的原理和方法2.1 水声换能器的主要参数水声换能器的主要性能指标有;水中工作频率、工作频率范围、频带宽度、发射声源级(声功率)及发射响应、指向性、接收灵敏度及接收灵敏度响应、发射效率、品质因素、阻抗、最大工作深度、尺寸和重量等。
其中:(1). 工作频率水声换能器的工作频率或工作频率范围通常是由声纳设备的工作频率确定的。
换能器的阻抗、指向性、灵敏度、发射功率、尺寸等都是频率的函数。
一般说来,对发射换能器要计算它在谐振频率上或在谐振频率附近有限频带内的性能指标,在这个频率及其附近有最大的发射效率。
对于宽带接收换能器(压电换能器)谐振频率应远高于接收频带的上限,以保证宽带内有平坦的接收响应且要计算它在谐振频率及其以下频段内的接收响应。
大型低频声纳换能器的频率在数十赫到数千赫,而小型目标探测声纳换能器在数十千赫到数百千赫。
(2). 指向性不管是换能器还是换能器阵,它们的发射响应或接收响应会随着相对于它们的方向改变而变化。
这就是换能器具有指向性,发射换能器发射的声波如同探照灯射出的光束一样。
由于换能器具有指向性就可以把声能聚集到某个方位发射,使能量更加集中。
采用许多换能器组成尺寸更大的基阵,在相同的频率上指向性更加尖锐,能量更加集中,发射的距离更远,在接收状态下信噪比更大,作用距离也越远。
(3) 阻抗(或导纳)特性换能器在谐振频率附近可以看成一个简单串并联的等效电路。
电路中的每一个电阻、电容或电感表示该换能器固有特性,这就是换能器阻抗(或导纳)特性。
掌握了换能器的阻抗特性才能使它与发射机的末级回路或接收机的输入电路相匹配。
换能器的阻抗(或导纳)是一个复数,它是频率的函数,一般可表示成:Z(w)=R(w)+jX(w) (单位:欧姆)。
在机械共振时动态无功抗趋于零,静态容抗可用匹配电感调谐此时可以把它看成一个纯阻。
压电换能器电阻抗一般在数十欧姆到数千欧姆的范围内。
(4). 发射功率发射换能器的功能是将电子发射机的电功率转变为机械振动的机械功率,再把机械功率转变为声功率发射出去。
发射声功率是指换能器在单位时间内向介质中辐射能量多少的物理量,功率的单位用瓦表示。
换能器的发射功率受额定电压(或电流)、动态机械强度、温度及介质特性等因素的制约。
(5) 发射响应能够全面反映发射换能器性能指标的是发射响应,主要有发射电压响应和发射电流响应。
发射电压响应S V的定义是指发射换能器在指定方向上离其有效声中心d0米距离上产生的自由场表观声压P f与加到换能器输入端的电压U的比值:S V=P f d0/U。
发射电压响应通常用分贝表示。
发射电流响应是指发射换能器在指定方向上离其有效声中心d0米距离上产生的自由场表观声压P f与加到换能器输入端的电流I的比值:S I=P f d0/I 。
发射电压响应通常用分贝表示。
(6). 接收灵敏度换能器的自由场电压灵敏度指的是接收换能器在入射声波的作用下,输出端的开路电压U(w)与自由场中(假设接收换能器不存在时)它的声中心所在点的声压P f(w)的比值M(w)。
对于接收换能器而言,需要在很宽的频率范围内接收入射声信号,而压电换能器通常是在低于谐振频率的宽频带范围内工作。
(7)接收灵敏度的起伏宽带接收换能器要求在使用的频范围内有比较平坦的接收响应。
通常规定在工作频段内接收电压灵敏度起伏量为±1.5dB。
2.2 程控接口2.2.1 IEEE488接口(GPIB接口)GPIB接口于1965年首先由美国HP公司设计推出。
开始主要用于该公司自己生产地仪器与计算机之间地连接,被命名为HP-IB。
由于该接口当时地高传输速率(1MB/S),很快在测量领域流行起来,最后被吸纳为IEEE标准488-1975,并进一步被接纳为ANSI/IEEE标准488.1-1987,GPIB则是比HP-IB、IEEE488更为流行地叫法。
今天,GPIB测试技术有了长足地发展,ANSI/IEEE488.2-1987标准更严格地定义了控制器与仪器之间地通信方式;在GPIB总线规范基础上发展起来的VXI总线测试系统更是代表了仪器测试技术发展的潮流。
GPIB接口的问世使得自动化测试中仪器得互连有了统一得标准,推动了仪器制造业的技术发展,在以后的20年间,各种带标准接口的测试仪器如雨后春笋般涌现出来,使检测人员能够轻而易举的组成各种功能强大的自动化测试系统。
用GPIB接口总线构成的系统总线上可连接不同传输速率的仪器设备多达14台,在程控仪器仪表与计算机联网系统中起着一个重要的桥梁作用。
用GPIB接口与总线构成的系统包括总线、接口和设备。
GPIB总线是系统级的总线,该总线上连接的程控仪器设备都包含两部分功能,一种是仪器本身的设备功能,一种是实现GPIB接口与总线规约的接口功能。
2.2.2 接口功能在接口系统中,为了进行有效地信息传递,一般要包括三种基本地接口功能要求,即讲者、听者和控者。
控者是对系统进行控制的设备,能管理GPIB上的通信,使系统按适当的命令正确运行。
它能发出接口消息,如各种命令、地址,也能接收仪器发来的请求和信息。
讲者使发出装置消息的设备,即能输出数据。
在一个系统中可以有一个或多个讲者,但在任一时刻只能有一个讲者工作。
听者使接收讲者所发出的装置消息的设备,从GPIB接收数据。
在一个系统中可以有几个听者,且可以有一个以上的听者同时工作。
在一个GPIB系统中至少应该具有一个讲者功能和一个听者功能,以便传递信息,在自动测试系统中还应具备控者功能。
一台仪器可具有上述一、二或三个功能。
接口消息是指用于管理接口系统的消息,它只能在接口功能及总线之间传递,并为接口功能所利用和处理,而绝不允许传递到装置功能部分去,装置消息在装置功能间传输,并由装置功能所利用和处理,它不改变接口功能的状态。
2.2.3 VISA控制技术VISA是一种用于仪器程控的标准I/O应用程序接口(API),VISA本身不提供仪器程控能力,它是一种调用低级驱动程序的高级应用编程接口。
NI-VISA的层次结构如图2所示:VISA可以根据所用仪器的类型调用适当的驱动程序,以实现对VXI、GPIB或串口仪器的控制。
应用VISA的理由:VISA是标准。
VISA是整个仪器工业做仪器驱动程序的标准API。
可以利用一个API来控制一系列不同类型的仪器,如VXI、GPIB和串口。
接口无关性。
VISA利用同样的操作来与各仪器进行联系,而不必考虑接口的类型。