当前位置:文档之家› 全面腐蚀与局部腐蚀讲解

全面腐蚀与局部腐蚀讲解


B 深度法

重量法难直观知道腐蚀深度,如制造农药的反应 釜的腐蚀速度用腐蚀深度表示就非常方便。 B=8.76V/ρ (3-3)
B 深度计算腐蚀速度,mm/a;(毫米/年) V 腐蚀速度,g/m2·h;ρ 材料密度g/cm3. (3-3)式是将平均腐蚀速度换算成单位时间内的 平均腐蚀深度的换算公式。 对均匀腐蚀金属材料,判断其耐蚀程度及选择耐 蚀材料,一股采用深度指标。

点蚀包括点蚀核的形成到金属表面出现宏观可见 的蚀孔。
蚀孔出现的特定点称为点蚀源。

形成点蚀源所需要的时间为诱导时间,称孕育期。 孕育期长短取决于介质中Cl-的浓度、pH值及金 属的纯度.一般时间较长。Engell等人认 为.孕育期的倒数与Cl-浓度呈线性关系:

1/τ = K[Cl-]
(3-4)
3.4.1 晶间腐蚀产生的条件
1)组织因素 晶界与晶内的物理化学状态及化学成分不同,导 致其电化学性质不均匀。 如晶界的原子排列较为混乱,缺陷多,易产生晶 界吸附(C、S、P、B、Si)或析出碳化物、硫化 物、σ相等。 晶 腐蚀介质能显示出晶粒与晶界电化学不均匀性。 易发生晶间腐蚀金属材料有不锈钢、铝合金及含 钼的镍基合金等。
3.1.2 全面腐蚀速度及耐蚀标准




人们关心的是腐蚀速度。知道准确的腐蚀速度, 才能选择合理的防蚀措施及为结构设计提供依据。 全腐速度也称均匀腐蚀速度,常用表示方法有重 量法和深度法。 A重量法 重量法是用试祥在腐蚀前后重量的变 化(单位面积、单位时间内的失重或增重)表示腐 蚀速度的方法。其表达式为; V+∆W = (W1 – W0)/st (3-1) V-∆W = (W0 – W2)/st (3-2) W0 试样原始重量; W1未清除腐蚀产物的试样 重量; W2清除腐蚀产物的试祥重量,±增重、失重。
1)E>Ebr,将形成新的点蚀孔(点蚀形核),已有 的点蚀孔继续长大: 2)Ebr>E>Ep,不会形成新的点蚀扎,但原有的 点蚀孔将继续扩展长大; 3) E≤Ep,原有点蚀孔全部钝化,不会形成新的 点蚀孔。

Ebr值越正耐点蚀性能越好。 Ep与Ebr值越接近,钝化膜修复能力愈强。
B 点蚀源形成的孕育期
3.1.1 全面腐蚀的特征



全面腐蚀是常见的一种腐蚀。全面腐蚀是指整个 金属表面均发生腐蚀,它可以是均匀的也可以是 不均匀的。 钢铁构件在大气、海水及稀的还原性介质中的腐 蚀一般属于全面腐蚀。 全面腐蚀一般属于微观电池腐蚀。通常所说的铁 生锈或钢失泽.镍的“发雾”现象以及金属的高 温氧化均属于全面腐蚀。

随着含Cr量的增加,点蚀电位向正方向移动。 如与Mo、Ni、N等合金元素配合,效果最好。 降低钢中P、S、C等杂质含量可降低点蚀敏感 性。经电子束重熔超低碳25Cr1Mo不锈钢具有 高的耐点蚀性能。

2)热处理的影响 奥氏体不锈钢经过固溶处理后耐 点蚀。
3.2.3.2 环境因素
1)卤素因素 不锈钢的点蚀是在特定的腐蚀介质中发生的。在 含卤素离子的介质中,点蚀敏感性增强,其作用 大小按顺序为:C1->Br->I-。 点蚀发生与介质浓度有关,而临界浓度又因材料 的成分和状态不同而异。 不锈钢点蚀电位与C1-及Br-浓度关系 cl E 0.88lg a 0.168 V (2-74)
5)介质流动的影响

介质处于流动状态,金属的点蚀速度 比介质处于静止状态时小。 实践表明.一台不锈钢泵经常运转, 点蚀程度较轻,长期不运转很快出现 蚀坑。

3.2.3.3 预防点蚀的措施
1)加入抗点蚀的合金元素 含高Cr、Mo或含少量N及低C不锈钢抗点蚀效果 最好。双相不锈钢及超纯铁索体不锈钢抗点蚀性 能非常好。 2)电化学保护 防止点蚀的较好方法是对金属设备采用恰当的电 化学保护。在外加电流作用下, 将金属的极化电 位控制在保护电位Ep以下。 3)使用缓蚀剂 对于循环体系,加缓蚀剂可抑制点蚀,常用缓蚀 刑有硝酸盐、亚硝酸盐、铬酸盐、磷酸盐等。
3.4 晶间腐蚀




晶间腐蚀是金属材料在特定的腐蚀介质中沿着材 料的晶界发生的一种局部腐蚀。 它是在金属表面无任何变化的情况下,使晶粒间 失去结合力,金属强度完全丧失,导致设备突发 性破坏。 许多金属都具有晶间腐蚀倾向。 其中不锈钢、铝合金晶间腐蚀较为突出。 在石油、化工和原子能工业中,晶间腐蚀占很大 的比例,可导致设备破坏,危及正常生产。 应力存在,由晶间腐蚀转变为沿晶应力腐蚀破裂 的事故更多。





加热 T=1050~ ll00℃以上时,碳溶解 在奥氏体中、溶解量为0.1%~ 0.15%。 若从高温缓冷至室温时,大量Cr23C6的从 奥氏体中析出; 如从高温急冷至室温(淬火),则碳过饱和 固溶于钢中,这种过饱和固溶体不稳定的。 低温重新加热过程中(回火),碳以Cr23C6 形成沉淀析出,使奥氏体不锈钢晶间腐蚀 敏感性增加。其变化过程如图3-8所示。
Cl- 浓度在一定临界值以下不发生点蚀。
C点蚀坑的生长



点蚀生长机制较公认的是蚀孔内的自催化酸化机制,即 闭塞电池作用。 不锈钢在充气的含Cl-离子的中性介质中腐蚀过程。 如图3-2所示,蚀孔一旦形成,孔内金属处于活化状态 (电位较负),蚀孔外的金属表面仍处于钝态(电位较 正),于是蚀孔内外构成了膜-孔电池。孔内金属发生阳 极溶解形成Fe+2 (Cr3+、Ni2+等): 孔内 阳极反应:Fe→Fe+2 + 2e (3-5) 孔外 阴极反应:1/2 2H2O + 2e → 2OH- (3-6) 孔口 pH值增高,产生二次反应: Fe+2 + 2OH- → Fe(OH)2 (3-7) Fe(OH)2 + 2H2O + O2 → Fe(OH)3 ↓ (3-8)
3 全面腐蚀与局部腐蚀



金属腐蚀分为全面腐蚀和局部腐蚀。 工程技术上看,全面腐蚀腐蚀其危险性小些; 局部腐蚀危险极大。没有什么预兆的情况下,金 属构件就突然发生断裂,甚至造成严重的事故。 腐蚀失效事故统计:全腐17.8%,局腐82.2%。 其中应力38%,点蚀25%,缝隙2.2%,晶间 11.5%,选择2%,焊缝0.4%,磨蚀等3.1%。 可见局部腐蚀的严重性。 局部腐蚀类型,主要有点蚀(孔蚀)、缝隙腐蚀、 晶间腐蚀、选择腐蚀,应力腐蚀、腐蚀疲劳、湍 流腐蚀等。
3.4.2 晶间腐蚀的机理
现代晶间腐蚀理论有两种:贫化理论和晶间杂质 偏聚理论。 3.4.2.1 组织与晶间腐蚀敏感性关系 多数金属材料一般都要经历热处理和焊接等冶金 过程。这都会引起合金组织变化,如在晶界上析 出碳化物或其他相。 不锈钢(18-8)中碳的质量分数一般在0.02%~ 0.15%范围内。RT 碳在不锈钢中的溶解度为 0.02%~ 0.03%(质量分数); 碳处于饱和固溶状态,可见碳在奥氏体中的溶解 度将随温度而变化。

C 耐蚀标准

3.2 点腐蚀



点腐蚀(孔蚀)是一种腐蚀集中在金属表面数十微 米范围内且向纵深发展的腐蚀形式,简点蚀。 点蚀是一种典型局部腐蚀形式,具有较大的隐患 性及破坏性。在石油、化工、海洋业中可以造成 管壁穿孔,使大量的油、气等介质泄漏,有时甚 至会造成火灾,爆炸等严重事故。 3.2.1 点蚀的形貌与特征 A点蚀的形貌 点蚀表面直径等于或小于它的深度。一般只有几 十微米。其形貌各异.有蝶形浅孔,有窄深形、 有舌形等等。




Fe(OH)3沉积在孔口形成多孔的蘑菇状壳层。 使孔内外物质交换因难,孔内介质相对孔外介质 呈滞流状态。 孔内O2浓度继续下降,孔外富氧,形成氧浓差 电池。其作用加速了孔内不断离子化,孔内 Fe2+浓度不断增加,为保持电中性,孔外Cl-向 孔内迁移,并与孔内Fe2+形成可溶性盐 (FeCl2)。 孔内氯化物浓缩、水解等使孔内pH值下降,pH 值可达2-3,点蚀以自催化过程不断发展下去。 孔底 由于孔内的酸化,H+去极化的发生及孔 外氧去极化的综合作用,加速了孔底金属的溶解 速度。从而使孔不断向纵深迅速发展,严重时可 蚀穿金属断面。

3)溶液pH值的影响 在W(NaCl)为3%的NaCl溶液中,随着pH值 升高,点蚀电位显著地向正移,如图3-6。 在酸性介质中,pH值对点蚀电位的影响,目前 还没有一致的说法。 4)温度的影响 在NaCl溶液中,温度升高能显著地降低不锈钢 点蚀电位Ebr,使点蚀坑数目急剧增多。 这被认为与C1-反应能力增加有关,见图3-7。
3.4.2.2 贫化理论




认为晶间腐蚀是由于晶界析出新相,造成晶界附 近某一成分的贫乏化。 如奥氏体不锈钢回火过程中(400-800℃)过饱 和碳部分或全部以Cr23C6形式在晶界析出。 Cr23C6析出后,碳化物附近碳与铬浓度急剧下 降。由于Cr23C6 的生成所需的碳是来自晶粒内 部,铬主要由碳化物附近的晶界区提供。 铬沿晶界扩散的活化能为162~252kJ/mol, 铬由晶粒内扩散活化能约540kJ/mol,因此铬 沿晶界扩散速度要比晶粒内扩散速度快得多。

D点蚀程度 点蚀程度可用点蚀系数或点蚀因子来表示:
点蚀系数=最大腐蚀深度/平均腐蚀深度
点蚀因子= P/d

图3-3 最深点蚀、平均侵蚀深度及点蚀
因子的关系。
3.2.3 影响点蚀的因素及预防措施
3.2.3.1 材料因素
1)合金元素的影响 不锈钢中Cr是最有效提高耐 点蚀性能的合金元素。




经高温淬火后的晶粒间界上,无任何析出, 如图3-8(a); 在回火过程中出现了局部非常细小碳化物, 如图3-8(b) ; 在一定温度范围(敏化温度)内随回火时间的 延长析出的Cr23C6以连续的网状存在如图 3-8(c)、(d),此时晶间腐蚀最敏感; 在敏化温度温度范围内继续延长时间,即长 时间回火处理,将发生碳化物的聚集,晶间 腐蚀将逐渐消除,如图3-8(e)。
相关主题