安捷伦电子测量仪器使用及维护建议安捷伦电子测量仪器使用及维护建议版本. 03.08Agilent Technologies Co. SSU 蔡宏编辑-----------Be Professional , Be Expert-------目录静电的危害及防护 (3)微波接头的使用及养护常识 (12)电子测量仪器及其系统的环境要求 (16)仪器硬件故障的最终确认 (21)附录一:部分种类仪器的用户检验步骤及注意事项 (23)附录二:Agilent仪器常见故障现象及可能原因分析 (27)附录三:参考资料 (29)静电的危害及防护引言.我们在确定自己的研究课题或找到解决方案时,下一步往往就是准备好完成课题或解决方案所需的软硬件手段.而测量仪器是人们必备的硬件设施.在得到仪器后,如何高效地使用仪器,或如何避免仪器的人为损坏,能够更长时间地为我们服务,就自然而然地成为我们必须关心的环节了.静电的危害那么哪些因素可以影响或威胁到仪器的正常使用呢?了解电子测量仪器或微电子的工程师所想到的第一个词,我想必定是”静电放电”(ESD).的确,静电是我们再熟悉不过的一种现象了,除了偶而轻微电击或讨厌的静电吸附外,对我们大多数人来讲,静电似乎并不是什么了不起的问题.过去,许多从事电子工业的人也并不认为静电放电是使电子元件乃至整个电子设备损坏的一个主要原因.许多人不相信静电放电的严重性,甚至怀疑是否真正存在.这也难怪,因为要判断或检查ESD(静电放电简称-Electrostatic Discharge)所引起的失效比较困难,有些元件受ESD损伤后往往在经过一段时间后才失效,使人们难于追踪并确定为ESD引起的损坏.而且许多电子元件可以被远低于人能感觉的静电放电所损伤或损坏.无源器件也和有源器件一样对ESD敏感,损坏程度从性能下降直至短路那样的严重损坏.目前,许多人对自己身上常常带可观的静电以至常常受静电放电电击的现象习以为常了.可是,您知道吗?当你的手触摸及门把手或水龙头的瞬间突然感受到受电击甚至听到”啪”的一声响之时,你身上的静电已高达4000至5000伏以上了.而且.在受电击之前,你并没有任何感觉.实际上,人的身体上,衣服上经常带有几百伏到几千伏的静电.只要构成通路,积累的静电就会放电.由于在极短的时间内释放出大量的能量,常常导致电路元件损坏,因为这种放电通常大大超过许多电路元件所能承受的限度.据测试,人能感觉到”麻”时,静电电压已高达3500伏以上.高于4500伏时放电能发出响声.5000伏以上放电时可以见到火花.人感觉不到3500伏以下的静电. 现代许多高速超大规模集成电路碰到仅几十伏或更低的静电就会遭到损坏。
也就是说当你接触这些电路时,你既没有感觉到又没有看到更没有听到静电放电时,这块电路就已部分损伤或完全损坏,而你可能还在找其硬件或软件的原因。
你可能还没有意识到是静电这个“幽灵”。
在上个世纪中叶以前,静电现象就如同科技馆中的表演,只是一种有趣的物理现象;然而现在,静电已成为高科技现代化工业的恐怖主义者。
当两个物体表面接触并作相对运动后分开,就会在两个体表面留下可观的电荷.非导体物质上一旦有电荷积累就不易放掉.塑料包装材料,塑料地板,化纤织物和合成纤维地板,工作服,袖套,元件盒,泡沫塑料,仪器罩,香烟盒,复印纸,打印纸等,都可能带上相当客观的静电. 任何物质都是由原子组合而成,而原子的基本结构为质子、中子及电子。
科学家们将质子定义为正电,中子不带电,电子带负电。
在正常状况下,一个原子的质子数与电子数量相同,正负电平衡,所以对外表现出不带电的现象。
但是由于外界作用如摩擦或以各种能量如动能、位能、热能、化学能等的形式作用会使原子的正负电不平衡。
在日常生活中所说的摩擦实质上就是一种不断接触与分离的过程。
有些情况下不摩擦也能产生静电,如感应静电起电,热电和压电起电、亥姆霍兹层、喷射起电等。
二、三十多年以前,没有人会想到工程师要关心自身,工作服,衣服,鞋,仪器搬运车,塑料罩,封装带及诸如此类与ESD有关的问题.而今天,我们不得不要考虑这些问题,因为实际情况比我们想象的要糟得多.当你漫不经心地用手拿/摸印刷电路板和元器件,特别是微波半导体器件,随意把电路板或元器件直接放入普通塑料袋/尼龙布袋时,静电将使它们受到致命的伤害.现在看来,普及和加强防静电知识的教育还是很有必要的,目的是使人们对ESD的危害有足够的认识,包括从高级管理部门到基层的包装,收发部门从芯片制造IC制造到装配调试,仪器使用,安装和维修人员.带静电的人(也包括你!)都是ESD产生危害的祸首之一.问题的严重性美国”计算机/电子维修新闻”杂志早在1982年10月就报导过,仅仅由于ESD 造成的元器件损失每年高达五亿美圆;另据业内人士估计,每年由于ESD所造成的损失更高达一百亿美圆之巨!由此可见,ESD给电子工业造成的损失是何等的令人吃惊.1980年有人在分析了一批损坏的双极型大规模集成电路后指出,约77.5%是由ESD引起的.1980年3月,HP公司的一个制造分部进行了一次实验,以确定手的触摸对没有保护措施的IC的影响.共对87个集成电路进行了实验.首先经测试证明它们是好的,然后将其中的40个像通常那样放入塑料盒内,其余47个则放在防静电泡沫塑料袋内.放在塑料盒的器件经过集成电路部门的一些人触摸后放回盒内,随后对这40个器件再测试,结果有31个没有通过电路板测试,只有9个通过了测试.对放在防静电泡沫塑料盒中的47个器件也再进行测试,证明全部都是好的.HP公司(现为Agilent Technologies, 安捷伦科技)的另一个制造分部在1980年8月进行了一次非正式的试验,确定大量生产的印刷电路板上元件对ESD的敏感度,从成品库中取出十块电路板并验证是合格的.实验人员使用一个静电发生器通过静电放电探头接触这些电路板的连接头,所有十块板都被650V到1000V的静电所损伤.把这些电路板装入整机,结果证明十块板都坏了.修理情况表明,低功率肖特基TTL电路是对静电最敏感的器件.8080和TTL 电路受到损伤但未失效.这使我们得出两点有关ESD的重要结论:1).人体通常可能带1000到5000V的静电,而感觉不到3500-4000V 以下的静电.2).安装在印刷电路板上的器件因ESD引起损坏的危险性更大,因为每一根印刷线或导线都是连接几个元器件的通路,对这根线放电立即影响几个而不仅仅是一个器件.1980年年中,HP的一个计算机分部推出了一套积极的ESD防护规程以降低某系列部件高达23%的厂内损坏率,对雇员进行了有关ESD及其防护的培训,在生产区配备了静电安全工作台.三个月内,故障率被降低到3%以下.这是一个真实的案例。
九十年代中期,安捷伦在上海的一个用户是传呼机的维修中心,85024A是其主要的维修设备之一,一段时间内,该用户的85024A的返修量非常大,而且单一个体的重复维修次数较多,损坏部件均是85024A探头前端的微带信号放大器。
为了了解设备损坏率居高不下的原因,维修部工程师专程拜访用户,了解现场使用情况,最终发现用户的防静电措施存在纰漏,造成微波探头使用过程中极大的安全隐患。
经过用户的认真整改之后,85024A的损坏率迅速恢复正常。
这种的案例也同样发生在沈阳的用户身上。
ESD基本防护措施第一. 建立静电有害的牢固意识ESD防护的首要点是让所有的工作人员从高层管理部门到基层装配,维修人员都充分认识静电的存在及其危害的一面,而且要认识到最普通的危害在人体上和塑料上储存和产生的静电.第二. 要把所有的电子器件,电路板都看作是对ESD敏感的.1)在接触元器件/电路板之前先带上接地手腕环.若一时没有手腕环,可先用手触摸一下接地的机壳或框架等金属表面,以放掉人体上所带的静电.2)拿握元器件/电路板时,不得接触引线和接线片.3)不得在任何表面上滑动敏感元器件.所有元器件/电路板在使用前都应保存在原防静电包装袋内.第三. 要在”静电安全工作区”处理所有元器件和电路板.第四.在携带,运输及储存元器件/电路板时,必须有防静电包装,并有防静电警示标志,不得随意打开.有关ESD的错误观念:A. 只有金属氧化物半导体器件(MOS)对ESD敏感.的确,MOS器件对ESD极为敏感.然而,实验表明,其他种类的元器件也同样敏感.下表列出了各类器件对ESD的敏感程度(注意:在1类最敏感组内有非MOS器件。
表1。
典型元件对ESD敏感度(根据100pF电容通过1.5kOHM放电的测试结果。
1类,非常敏感0-1kV●无保护电路的MOS:场效应三极管(FET)和IC,特别是超大规模集成电路(VLSI).●MOS电容器(运算放大器内补偿)●结型场效应管和低电流可控硅整流器(SCRs)-0.15A以下。
●微波和甚高频(VHF)三极管,IC,尤其是肖特基器件。
●精密集成电路稳压器---稳定度优于0.5%.●精密薄膜电阻---0.1%级以上。
●低功率薄膜电阻---0.5W以上。
●双金属超大规模集成电路。
2类,敏感度1—4kV.●带保护电路的MOS(CMOS,NMOS,PMOS).●肖特基二极管。
●高速双极逻辑电路:发射极耦合逻辑电路(ECL)低功率肖特基晶体管—晶体管逻辑电路(LS-TTL).肖特基晶体管—晶体管逻辑电路(S-TTL).●线性集成电路。
3类,较不敏感:4-15kV.●小信号二极管---1W以下。
●低速双极性逻辑电路(TTL,二极管-三极管逻辑电路(DTL),高门限(TTL).●石英、压电晶体和发光二极管。
B. 只有未安装的元器件对ESD敏感.这种说法只有在以下情况下是正确的:电路的所有敏感点都有保护电路,尤其是那些连接到插头的敏感器件的输入端装有保护电路.通常的情况是安装在印刷板上的元器件具有更大的ESD损坏的危害性.因为一根印刷线连接到几个器件,静电可以击中几个而不仅仅是一个器件.CMOS电路加有电源时对于ESD有额外的危险,”锁住”(Latch-up),这是一种寄生的PNPN雪崩效应, 它通常是由于电源电压的输入输出“低频干扰”(glich)所引起的。
结果是这个寄生器件被触发导电,这时CMOS电路尽量将供电电源与公共点短路,从而引起本身过热而造成严重损伤。
对于这些电池供电的低功率CMOS期间,锁住现象并不损坏器件本身,而是加大了电池的放电,结果是不得不提早更换电池。
这两种情况通常都不会想到是由ESD所导致的,因为问题似乎在其他方面。
C. ESD只在低湿度环境条件下发生。
许多人认为高湿度时不存在静电问题。
的确,高湿度提高表面的导电率,不易产生摩擦景点,而且由于电荷分布到较大面积上,降低了电场强度并易于泄漏到大地。
但是,这种说法被广泛相信的原因是由于一般人的感觉界限,即3-4KV.当人体带有这个数值的静电电压时,如果他的指尖或持工具靠近一个导体表面就会产生可见可闻的电火花。