冰蓄冷系统的设计与施工一、工程概述XXXX位于XX东侧,建设单位是XXX房地产开发有限公司。
该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。
是全国最大的冰蓄冷工程项目。
该项目由XXXX安装工程有限公司第一项目部进行施工安装。
本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑面积1200m2蓄冰槽520m2)。
冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。
二、设备配置(一)冷源1. 双工况螺杆式冷水机组3台(YSFAFAS55CNE约克(合资) 2.基载离心式冷水机组2台(YKFBEBH55CPE勺克(合资)(二)冷却塔:大连斯频得冷却塔共计5台,CTA-600UFW两台,CTA-450UFW三台。
(三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185-MGS16/16(四)蓄冰槽(现场加工)蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT。
(见表1)(五)乙二醇循环水泵:德国KSB乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。
(六)冷却水循环泵:德国KSB冷却水循环泵选用卧式离心泵4台,其中1台备用三、运行策略:(一)负荷说明根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为11428KW(3250RT。
由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100獗荷情况逐时空调负荷:(见表2)蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。
本工程采用部分蓄冰模式。
根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负荷:11428KW( 3250RT设计日冷负荷:151705KWH( 43144RTH最大小时基载冷负荷:2286KW( 650RT扣除基载冷负荷后的最大小时冷负荷:9142.33KW (2600RT扣除设计日基载冷负荷后冷负荷:96852.4KWH (27544RTH(二)系统流程简述本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。
系统中设有板式热交换器3台,每台换热量为用3961KW( 1126RT,用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。
乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9根据冷负荷变化,通过电动调节阀CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。
电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。
同时,空调冷冻水回路采用的是二级泵系统,节省运行费用本工程最大蓄冰容量31787.2KW(9040RT ,分6个冰槽,槽内净高2.35 米。
为了尽量减少冰槽的占地面积,我们将蓄冰槽作成非标准型的,尽量利用建筑空间,顶板上方预留设备入口兼检查孔,供设备及检修人员出入。
冰槽结构为外保温。
自蓄冰槽向外的结构组成分为:防水涂刷层,橡塑保冷层。
为满足电力部门削峰填谷的需求,电力高峰段,双工况冷水机组,基载冷水机组满负荷运行,不足冷量由融冰输出供给。
系统设计中同时考虑备用,当任意一台机组发生故障时,开启备用基载冷水机组满足空调供冷的需求。
当任意一台双工况冷水机组发生故障时,开启备用基载冷水机组,满足第二天空调供冷的需求,当任意一个分区的蓄冰槽发生故障时,开启备用基载冷水机组,满足空调供冷的需求。
在过渡季节空调供冷时,停开冷水机组,仅输出融冰供冷便可满足空调需求。
此时,电动调节阀CV1,电动阀CV3关闭,开启电动阀CV2,CV4乙二醇溶液冰不流经双工况冷水机组,避免了泵功率的浪费。
在蓄冷槽单独供冷时,乙二醇溶液泵采用变频技术,大量降低水泵能耗。
(三)蓄冰运行策略根据全日冷负荷曲线及北京地区的分时电价情况,本设计采用的是负荷均衡的部分蓄冰策略,这样既可以用在夜间储存的冷量最大限度的满足在电力高峰期空调冷负荷需要,节约系统运行成本,也尽可能少的占用该建筑的有效面积。
四、运行情况比较:由于北京地区电网采用了峰谷电价政策,高峰电价与低谷电价已达到4.3 :1。
因此,采用冰蓄冷系统,可以大大降低空调系统运行费用。
现阶段,峰谷分时电价如下表:乙二醇系统的控制根据电力负荷的峰谷时段(电价的高低)和空调负荷的要求,整个蓄冰制冷系统能自动切换系统的运行工况:(1)双工况主机制冰模式(2)双工况主机+融冰供冷模式(满负荷情况)(3)融冰单供冷模式(部分负荷情况)。
控制系统根据工况要求,自动开关电动阀,组成某工况所需的流体通道。
通过阀门调节控制融冰速度;在融冰单供冷工况通过乙二醇泵变频及台数调节控制融冰速度及供水温度。
1. 双工况主机制冰模式:23 : 00〜7 : 00在此时段内为电力低谷期,电价低廉。
双工况主机设定为制冰工况并满负荷运行,所制得的冷量全部以冰形式存储起来,以供冷负荷高峰期使用。
开启双工况主机和乙二醇泵,在双工况主机、乙二醇泵和储冰槽之间形成一个制冰循环。
在电力低谷期,充分利用低谷廉价电力,三台双工况主机全力制冰,制冷机组首先使回路显热降温,直降到蓄冷球相变温度,达到相变温度后,随着吸收机组产生的冷量,蓄冷球开始发生相变(结冰),在结冰期间冰球不断吸取机组所产的冷量,至制冷机组产生的冷冻流体温度也略降至相变结束时对应的最终温度速度很快,而这种快速的降温表明了蓄冷阶段的结束。
因为制冰时主机的效率受到室外空气参数系统设定的,达到设计蓄冰量所需要的时间可能超过或短于电力低谷时段,如果超过电力低谷时段,系统会在早晨电力平峰期甚至电力高峰期制冰,系统的运行费用增加;如果短于电力低谷期,则会造成系统在达到设计蓄冰量以后无效或低效运行(主机出口温度很低),系统的运行费用也会增加。
所以应该在电力低谷期,充分用足制冷机组制冰量和冰球的蓄冰能力,才能最大发挥蓄冰的功效(即最的效果)。
判断制冰结束的条件是:①控制系统的时间程序指使为非储冰时间。
②当制冰主机出口温度低于-7C(可调)时或储冰装置的进出温差降到1.5 C (可调)。
2. 双工况主机+融冰供冷模式(满负荷情况):8 : 00〜23 : 00当用户冷负荷大于制冷机组所产生的冷量时,需要蓄冷槽与制冷机组同时供冷,即联供运行。
在此时段双工况主机满负荷运行,不足冷量由融冰满足,融冰供冷量根据负荷变化由电动调节阀CV1 CV2来调节。
开启双工况主机,乙二醇泵和冷冻水泵。
在双工况主机、乙二醇泵和板换形成一个供冷循环。
乙二醇泵把主机的冷量输送到板换,冷冻水和乙二醇溶液在板换进行热交换后,有冷冻水泵输送到分水器或空调末端。
除了由于检修原因人为干预外,应采用基载主机优先。
微机控制系统根据动态负荷预测的数据,控制蓄冷槽释冷量的大小,使蓄冷槽的蓄冷量当天基本用尽,又不能出现最后几小时蓄冷系统供不应求,使冰蓄冷系统运行到最经济的效果。
3. 双工况主机单位供冷模式(部分负荷情况):11 : 00〜18:00在此时段内为电力平价期,电价适中。
双工况主机设定为制冷工况并满负荷运行,满足空调冷负荷需要。
开启双工况主机、乙二醇泵和冷冻水泵,从板换出来的9C的乙二醇溶液先经过主机降温(7C),主机的设定出口温度为5C, 然后进入储冰槽,储冰槽阀门处于调节状态,经过储冰槽冷却的乙二醇溶液在阀门的调节下达到设定的供水温度4°C,供给板换。
同时通过调节CV8阀门控制板换二次侧的供水温度。
4. 融冰单供冷模式(部分负荷情况):8 : 00〜11 : 00;18 : 00〜23 : 00 在此时段内电力高价期。
融冰供冷满负荷运行,不足冷量由双工况主机满足,满足空调冷负荷需要。
这样可避开电力高峰期,将系统的最高用电量降至最低,节约运行成本。
融冰供冷量根据负荷变化由变频泵来调节。
开启乙二醇泵和冷冻水泵,乙二醇泵变频使板换二次侧的供水温度稳定在设计温度(如7C)。
此时,主机退出运行,主机的旁通CV12打开,乙二醇溶液不在流经主机,直接进入冰槽,通过变频有效节省能耗。
某些季节冷负荷低时往往只靠释冷便能满足冷负荷,要求微机控制系统根据动态蓄冷负荷预测,自动地控制系统的运行方式,使冰蓄冷系统运行在最佳状态,以达到削峰填谷节约能源的目的。
5. 备份模式:7 : 50〜8 : 00在此时段内由于没有其它负荷,此间系统中除基载主机及相应设备正常工作,提供该建筑的基本冷负荷外,所有设备均停止运行,整个系统处于备份状态。
此外,业主还可以根据该建筑的实际情况组成其他模式。
五、冰蓄冷系统自动控制功能1.冷冻水系统连锁控制冷冻水系统中,和板换相连的一次冷冻水泵和板换是多对多的关系,也同样存在象乙二醇系统中的联锁要求,负荷降低所需开启的一次冷冻水泵台数减少,对应的板换开启台数也需要减少,即一次冷冻水泵和板换冷冻水出口的电动阀门形成联锁,同样这种联锁控制不能影响一次冷冻水泵和板换互为备用的关系。
2.冷却水系统的控制根据主机(基载主机和双工况主机)的开启状态开启相应的冷却水泵,冷却水泵、主机、冷却塔和电动阀门形成联锁。
同时,通过电动阀门调节,冷却水泵、主机和冷却塔能互为备用,即当其中二种设备同时发生故障时,可以自动开起非对应的设备,通过阀门自动切换所需的工作回路。
根据冷却水的回水温度(冷凝器的进水温度)调节冷却塔风机、台数控制及冷却水旁通控制,以保证冷却水的回水温度不低于主机所要求的最低冷却水供水温度,同时尽可能使冷却水回水温度降低,以提高主机的制冷效率。
3. 整个系统的控制与监视(不包括冷冻水二次水泵)(1)系统的启停顺序控制系统的启停顺序除考虑设备的保护外,还应充分利用主机停机后管道系统中的冷量。
主机,如果主机需要开启,则力求使主机处于满负荷运行状态,同时当天冰必须能全部用完;同时以末端空调冷负荷。
开启顺序:阀门调节到相应的工况状态一冷却水泵一冷却塔一冷却水泵—(基载主机)一乙二醇泵一双工况主机。
停机顺序:双工况主机(基载主机)一冷却塔一冷却水泵一乙二醇泵一冷冻水泵。
以上括号内的设备表示如果该设备需要开启,可在此阶段开启。
系统的启停顺序以及时间间隔在自控程序中编制完成,自控系统的实际操作中可以做到根据工况预测开机。
(2)系统运行模式的控制储冰制冷系统的运行模式通常有三种:主机优先,融冰优先,优化控制。
其中,融冰由现在负荷预测技术成熟后不再采用。
系统运行模式的控制必须结合优化控制软件,根据优化软件的判断结果调整系统的运行状态。
主机优先:在设计日工况下(冷负荷大),采用主机优先的模式,冷负荷高峰时段内主机的容量不能满足冷负荷需求,通过融冰来补充能量。