锅炉热力计算讲解
1/12
高温烟气和管壁间的辐射换热
根据传热学基本公式,高温烟气每小时传给辐射受热面的热量可
用下列公式计算:
Qf a 0 ( xi Fi )(Th4y
Tb4 )
a 0 ( xi Fi )Th4y
(1
Tb4 Th4y
), kW
式中:a 为炉膛黑度;Fi 为布置水冷壁的炉墙面积,m2 ,xi为 水
2/3
工质质量流速ρω与 烟气速度Wy的选择
工质质量流速ρ ω 太低,工质的传热能力下降,受热面管壁温度升 高;ρ ω 太高,工质的流动阻力大,电耗大
通常要求过热器系统的总阻力应不大于过热器出口压力的10%;再热 系统的总阻力应不大于再热蒸汽进口压力的10%;省煤器中水的阻力应 不大于汽包压力的10%。推荐值见表12-5
锅炉热力计算分为设计计算和校核计算 设计计算 给定锅炉容量、参数和燃料特性 确定炉膛尺寸和各部件的受热面积;燃料消耗量;锅炉效率; 各受热面交界处介质的参数;各受热面吸热量和介质速度等 常用于新锅炉的设计。在额定负荷下进行
1/2
热力计算方法
校核计算 已知锅炉结构和尺寸、锅炉负荷和燃料特性 确定各受热面交界处介质参数、锅炉热效率、燃料消耗量等 用于考核锅炉在非设计负荷或燃用非设计燃料时热力特性及 经济指标;由于计算参数多与炉膛结构有关,故设计计算也常 采用校核计算方法 锅炉校核热力计算应在锅炉结构计算的基础上进行 对锅炉机组作校核计算时,烟气的中间温度和内部介质温度 包括排烟温度、热空气温度,甚至过热蒸汽温度均是未知数, 故需先假定,然后用逐步逼近法去确定
2/2
炉膛出口烟气温度的选择
炉膛出口烟气温度 为凝渣管或屏式过热器前的烟温 根据锅炉受热面的辐射和对流传热的最佳比值(辐射受热 面和对流受热面的金属耗量及总成本最小), 应为1250℃ 为防止对流受热面的结渣。则一般应取 <(ST-100)℃ 当没有可靠的灰熔点资料时,不应超过1050℃ 当 炉 膛出口 处 布置 着屏 式 受热 面时 , 一般 取 1100 ~ 1200℃ 对于易结渣的燃料, 应保持在1000~1050℃ 的水平
冷壁的角系数(14-28),查图14-3;Thy、Tb 分别为火焰平均温度 与辐射受热面上灰污层表面温度;(1–Tb4 /Thy4)为因受热面管壁 污染而使其吸热量降低的程度,用污染系数ζ (14-31)表示
ζ 与燃料性质、燃烧工况、水冷壁结构等因素有关,推荐值见表 14-2。当炉膛出口烟窗布置屏式水冷壁时,考虑炉膛与屏之间的热 交换,ζ = ζ 0β 。β 与燃料种类和屏区烟温有关。可查图14-4
3/3
炉内传热计算模型
炉内传热计算目的 确定炉膛出口烟气温度和炉膛的辐射传热量, 以便进行对流受热面的换热计算及锅炉热平衡校核。 为应用传热学基本原理分析炉内辐射传热,简化计算,需作以下假设
把传热过程和燃烧过程分开,在必须计及燃烧工况影响时,引入经 验系数予以考虑
炉内传热只考虑辐射换热,略去约占总换热量5%的对流换热 炉内的各物理量(温度、黑度和热负荷等)认为是均匀的 与水冷壁相切的平面是火焰的辐射面,也是水冷壁接受火焰辐射的 面积,称为水冷壁面积 这样,炉内火焰与四周炉壁之间的辐射换热可简化为两个互相平行 的无限大平面间的辐射换热来考虑
Q a 0 F Th4y , kW(14 10)
3/12
炉内烟气放热量
假设1Kg计算燃料在炉内完全燃烧产生的有效热量Q 全部用于加 热燃烧产物而不与炉壁发生热交换时,燃烧产物所能达到的最高温 度称为绝热燃烧温度或理论燃烧温度,用Ta 表示,Ia= Q
燃料燃烧过程中,将热量传给水冷壁,离开炉膛时烟气冷却到T ,
煤粉锅炉热力计算
热力计算方法与应用
热力计算方法 主要设计参数的选择 炉膛传热计算 对流受热面计算 锅炉校核热力计算程序 F220/100-W锅炉校核热力计算说明
1/1
热力计算方法
锅炉机组的热力计算从燃料的燃烧和热平衡计算开始,然后 按烟气流向对锅炉机组的各个受热面(炉膛、屏式过热器、对 流过热器及尾部受热面等)进行计算
1/3
排烟温度与热空气温度的选择
最佳排烟温度 py 为燃料费用和尾部受热面金属费用总和最少时 所对应的排烟温度,同时还与锅炉的给水温度、燃料的性质等因素 有关。推荐值见表12-3
py 低,排烟热损失小,锅炉热效率高,节约燃料;但由于尾部受 热面的传热温压降低,金属耗量增多
热空气温度trk 主要取决于燃料的性质 着火性能好和水分低的燃料,可以采用较低trk;着火性能差或水 分较多的燃料,一般要求采用较高值。此外, trk值还与制粉系统的 干燥剂种类、锅炉的排渣方式等有关。推荐值见表12-4
锅炉各部分水冷壁的角系数x不同,水冷壁污染情况ζ 也不 同,故对整个炉墙,应采用平均热有效系数,即
i Fi F (14 35)
式中 F= F1 + F2 +...,为炉膛总炉墙面积, m2。
将式(14-35)代入上式,即可得到炉内高温烟气(火焰)和水 冷壁之间的辐射热交换公式
烟气流速Wy 过低,受热面面积增加,积灰加重,同时影响传热; Wy 过高,飞灰磨损加重
当≤7000C时,飞灰颗粒变硬,磨损问题相对突出,这时,应按磨损 条件确定横向冲刷受热面的极限烟速
对于一般的煤为9~10 m/ s;对于灰多和灰分磨蚀性较强的燃料为 7~8 m/ s;对于灰少和磨蚀性较弱的煤为10~12 m/s
对应的烟气焓为 I ,若以 T 作为定性温度,则烟气在炉内的放热
量可用下式计算 Qf(Ta T), kW(14 6)
显然,水冷壁污染越严重,Tb 越大,管壁灰污层反方向辐射越 强,水冷壁吸收辐射热能力下降,这时,污染系数ζ 是减小的。不 同受热面污染情况不同,ζ 也不同
2/12
高温烟气和管壁间的辐射换热
上式可改写为: Q f a 0 ( i x i Fi )Th4y , kW 令 i i xi,称之为炉墙的热有效系数(14-30)