目前,气相质谱和液相质谱的联用已经越来越普及。
作为质谱仪中的一个重要组成部分—离子源有哪些种类以及各自不同的用途呢?首先对于气相质谱(GS/MS)来说,主要有电子轰击电离源(EI)、化学电离源(CI)和场致电离源(FI)及场解吸电离源(FD)。
EI是利用一定能量的电子与气相中的样品分子相互作用(轰击),使分子失去电子,电离成离子。
当分子离子具有的剩余能量大于其某些化学键的键能时,分子离子便发生碎裂,生成碎片离子。
其优点在于它是非选择性电离,只要样品能气化都能够离子化,且离子化效率高、灵敏度高;能够提供丰富飞结构信息,是化合物的指纹谱;有庞大的标准谱库供检索。
其缺点在于不适用于难挥发、热不稳定的样品,而且只能检测正离子,不检测负离子。
CI是指引入一定的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或裂解,生成的离子和反应气分子进一步反应或和样品分子发生离子分子反应,通过质子交换使样品分子电离。
其优点在于可以通过控制反应,根据离子亲和力和电负性选择不用的反应试剂,用于不同化合物的选择性检测。
其缺点在于也不适用于难挥发和热不稳定样品,谱图重复性不如EI图谱,而且反应试剂容易形成较高的本底,影响检测限。
FI和FD是一种软电离方式,由一个电极和一组聚焦透镜组成,形成高达几千伏的强电场,使气态分子的电子被拉出而电离。
其优点在于几乎没有碎片离子,没有本底,图谱很干净。
缺点在于仅适用于扇形磁场质谱和飞行时间质谱仪,我们常见的四级杆质谱和离子肼质谱都不能配置FI和FD源,而且高压容易产生放电效应,操作也更难一些。
EI源是我们最常见的气质离子源。
对于液相质谱(LC/MS)来说,主要有大气压离子源(API)、快原子轰击源(FAB)和基质辅助激光解析电离源(MALDI)三种电离方式。
API主要给出分子量信息,一定条件下可以提供有限的信息结构,它又包括电喷雾电离(ESI)和大气压化学电离(APCI)。
ESI是指样品溶液从毛细管流出时,在电场及辅助气流的作用下喷成雾状的带电液滴,液滴中溶剂被蒸发,使液滴直径变小,发生“库伦爆炸”,把液滴炸碎,此过程不断重复,形成样品离子。
其优点在于能够给出分子量信息,适合于离子型和极性分析物,灵敏度高,高分子量测定,适合毛细管高效液相色谱,缺点在于对液相的流速有一定的限制,在高盐浓度下对离子有抑制。
APCI是指样品被迫通过一根窄的管路喷雾针,使其得到较高的线速度,并且给喷雾针高温加热及雾化气,使液流在脱离管路的时候快速蒸发成液体,然后再大气压条件下利用尖端高压放电而使分析物发生气相化学电离。
其优点在于使用方便,耐用性好,灵敏度高,可以匹配高流速,适合于非极性至弱极性样品,小分子样品以及抗菌素和碱性药物等。
其缺点在于有可能发生热裂解,有低质量端的化学噪声大,有限的结构信息。
因此ESI和APCI是互补的。
FAB离子化能力强,适用于强极性、挥发性低、热稳定性差和相对分子质量大的样品,对非极性样品灵敏度下降、低质量区以下产生较多干扰峰。
MALDI的准分子离子峰很强,几乎没有碎片离子,可以直接分析蛋白质酶解后多肽混合物,对样品中杂质的耐受量较大,适用于多肽、蛋白质、糖蛋白、DNA片段、多糖及其他生物技术产品的分析。
API源是我们最常用的液质离子源。
ELEMENT GD双聚焦辉光放电质谱仪USB在数据采集系统中的应用质谱仪的种类和历史2011-11-26 19:44:32| 分类:默认分类| 标签:|举报|字号大中小订阅质谱仪简介又称质谱计(mass spectrometer)。
进行质谱分析的仪器,即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。
质谱仪以离子源、质量分析器和离子检测器为核心。
离子源是使试样分子在高真空条件下离子化的装置。
电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。
它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。
质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。
分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。
离子源、质量分析器和离子检测器都各有多种类型。
质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。
分离和检测不同同位素的仪器。
仪器的主要装置放在真空中。
将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。
质谱方法最早于1913年由J.J.汤姆孙确定,以后经F.W.阿斯顿等人改进完善。
现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。
质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。
现代质谱仪的分辨率达105 ~106 量级,可测量原子质量精确到小数点后7位数字。
质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。
测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。
由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。
对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。
质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。
由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。
固体火花源质谱:对高纯材料进行杂质分析。
可应用于半导体材料有色金属、建材部门气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门有机质谱仪有机质谱仪基本工作原理:以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,然后利用电磁学原理使离子按不同的质荷比分离并测量各种离子的强度,从而确定被测物质的分子量和结构。
有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。
分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。
有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。
它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的进样器,将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。
可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
无机质谱仪无机质谱仪与有机质谱仪工作原理不同的是物质离子化的方式不一样,无机质谱仪是以电感耦合高频放电(ICP)或其他的方式使被测物质离子化。
无机质谱仪主要用于无机元素微量分析和同位素分析等方面。
分为火花源质谱仪、离子探针质谱仪、激光探针质谱仪、辉光放电质谱仪、电感耦合等离子体质谱仪。
火花源质谱仪不仅可以进行固体样品的整体分析,而且可以进行表面和逐层分析甚至液体分析;激光探针质谱仪可进行表面和纵深分析;辉光放电质谱仪分辨率高,可进行高灵敏度,高精度分析,适用范围包括元素周期表中绝大多数元素,分析速度快,便于进行固体分析;电感耦合等离子体质谱,谱线简单易认,灵敏度与测量精度很高。
质谱分析法的特点是测试速度快,结果精确。
广泛用于地质学、矿物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
同位素质谱仪同位素质谱分析法的特点是测试速度快,结果精确,样品用量少(微克量级)。
能精确测定元素的同位素比值。
广泛用于核科学,地质年代测定,同位素稀释质谱分析,同位素示踪分析。
离子探针离子探针是用聚焦的一次离子束作为微探针轰击样品表面,测射出原子及分子的二次离子,在磁场中按质荷比(m/e)分开,可获得材料微区质谱图谱及离子图像,再通过分析计算求得元素的定性和定量信息。
测试前对不同种类的样品须作不同制备,离子探针兼有电子探针、火花型质谱仪的特点。
可以探测电子探针显微分析方法检测极限以下的微量元素,研究其局部分布和偏析。
可以作为同位素分析。
可以分析极薄表面层和表面吸附物,表面分析时可以进行纵向的浓度分析。
成像离子探针适用于许多不同类型的样品分析,包括金属样品、半导体器件、非导体样品,如高聚物和玻璃产品等。
广泛应用于金属、半导体、催化剂、表面、薄膜等领域中以及环保科学、空间科学和生物化学等研究部门。
质谱的基本概念1、质谱是什么?Mass Spectromety特殊的天平:称量离子的质量。
质谱学:是一门研究气相离子结构、性质及反应行为的科学。
2、质谱能做什么?定性:化合物的结构定量:混合物的组成领域:化学、生物学、医学、药学、环境、物理、材料、能源等3、质谱的独到之处是什么?4S特性:Sensitivity 灵敏Speed 快速Specificity 特异Stoichiometry 化学计量质谱分类质谱学的发展历史一、质谱学领域的诺贝尔(Nobel)奖1906年:物理奖J. I. Thomson贡献:正电荷离子束在磁场中的偏转→磁质谱仪的基础同位素分析1989年:物理奖W. Paul贡献:离子阱技术的发明。
2002年:化学奖J. B. Fenn Virginia Commonwealth University, USA贡献:电喷雾(ESI)电离方法生物大分子分析Electrospray Ionization for Mass Spectrometry of Large Biomolecules, J.B. Fenn, M. Mann,C. K. Meng, S. F. Wong and C. M.Whitehouse,Science246, 64 (1989)Koichi Tanaka (田中耕一) Shimadzu Corporation,Japan贡献:激光辅助解吸电离质谱(MALDI)电离方法生物大分子分析Rapid Communications in Mass Spectrometry 2, 151 - 153 (1988), Koichi Tanaka, Hiroaki Waki, Yutaka Ido, Satoshi Akita, Yoshikazu质谱学的历史事件1886年,Goldstein 发现正电荷离子1898年,Wien 利用电场和磁场使正电荷离子偏转1912年,Thomson 研制第世界上一台质谱仪,氖同位素的发现1918年,Dempster 电子轰击电离(Electron ionization)及磁聚焦1919年,Aston 精密仪器,测定50多种同位素,第一张同位素表1934年,Stephens 均匀扇形磁场,球差和质量色散公式Herzog 和Hintenberger 电磁场组合,离子光学系统1940年,Nier 扇形磁场偏转质谱计,双聚集系统商品仪器的雏形235U,电磁制备方法,第二次世界大战期间在石油、化工等领域的应用1946年,Stephens 飞行时间质谱(Time-of flight mass analysis)1952年,Martin 气相色谱方法1953年,Paul等四极杆分析器(Quadrupole analyzers) 1956年,Gohlke and McLafferty 气相色谱-质谱联用(GC/MS)Beynon 高分辨质谱仪(High-resolution MS) 1965年,Hipple等离子回旋共振(Ion Cyclotron Resonance)1966年,Munson and Field 化学电离(Chemical ionization)1967年,McLafferty and Jennings 串联质谱(Tandem mass spectrometry) 1973年,McLafferty 液相色谱-质谱联用(LC/MS),热喷雾方法1974年,Comisarow和Marshall 傅立叶变换离子回旋共振质谱(FT-ICR-MS)1981年,Barber等快原子轰击电离质谱(FAB MS),生物中,小分子,2000以内1989年,J. B. Fenn 电喷雾电离Koichi Tanaka 基质辅助激光解吸电离1990年,Katta and Chait 电喷雾电离质谱观察蛋白质构象改变1993年,商品电喷雾质谱仪1995年,付立叶变换离子回旋共振质谱仪(与ESI和MALDI联用)1998年,高分辨飞行时间质谱仪(Delay Extract, Reflectron技术)我国质谱发展概况20世纪50年代,同位素质谱研究,配合核研究,技术来自于前苏联70年代,引进质谱仪,磁质谱:VG-ZAB-2F, 3F(7台,北大,南京、南开、兰州、中科大、武汉、中山)VG-7070E(20多个单位) Finnigan MAT系列80年代,中国科学院科学仪器厂,仿制7070E型质谱仪KYKY系列 1980年,中国质谱学会,杭州成立,依托于科学仪器厂《质谱学报》创刊中国质谱学会机构:无机专业委员会、同位素专业委员会、有机质谱专业委员会、生物医学专业委员会、仪器与教育专业委员会。