当前位置:文档之家› 电磁场计算题

电磁场计算题

一、计算题1、如图9-3所示,一质量为m,电量为+q,重力不计的带电粒子,从A板的S点由静止开始释放,经AB加速电场加速后,穿过中间的偏转电场,再进入右侧匀强磁场区域.已知AB间的电压为U,MN极板间的电压为2U,MN 两板间的距离和板长均为L,磁场垂直纸面向里,磁感应强度为B,有理想边界.求:(1)带电粒子离开B板时速度v0的大小;(2)带电粒子离开偏转电场时v的大小与方向;(3)要使带电粒子最终垂直磁场右边界射出磁场,磁场的宽度d应为多大?2、如图所示,内壁光滑的绝缘管做在的圆环半径为R,位于竖直平面内.管的内径远小于R,以环的圆心为原点建立平面坐标系xoy,在第四象限加一竖直向下的匀强电场,其它象限加垂直环面向外的匀强磁场.一电荷量为+q、质量为m的小球在管内从b点由时静止释放,小球直径略小于管的内径,小球可视为质点.要使小球能沿绝缘管做圆周运动通过最高点a.(1)电场强度至少为多少?(2)在(1)问的情况下,要使小球继续运动,第二次通过最高点a时,小球对绝缘管恰好无压力,匀强磁场的磁感应强度多大?(重力加速度为g)3、如图所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y轴负方向的匀强电场,场强为E。

一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出。

射出之后,第三次到达x轴时,它与点O的距离为L。

(重力不计)求(1)粒子射出时的速度v(2)粒子在磁场和电场中运动的总路程s。

4、如图所示,水平光滑绝缘轨道MN的左端有一个固定挡板,轨道所在空间存在E=4.0×102 N/C、水平向左的匀强电场.一个质量m=0.10 kg、带电荷量q=5.0×C的滑块(可视为质点),从轨道上与挡板相距x1=0.20 m的P点由静止释放,滑块在电场力作用下向左做匀加速直线运动.当滑块与挡板碰撞后滑块沿轨道向右做匀减速直线运动,运动到与挡板相距x2=0.10 m的Q点,滑块第一次速度减为零.若滑块在运动过程中,电荷量始终保持不变,求:(1)滑块沿轨道向左做匀加速直线运动的加速度的大小;(2)滑块第一次与挡板碰撞过程中损失的机械能.(3)若每次碰撞损失的机械能与碰前机械能的比值为定值,求滑块运动的总路程。

5、如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y轴正方向;在第Ⅳ象限的正三角形abc区域内有匀强磁场,方向垂直于xOy平面向里,正三角形边长为L,且ab边与y轴平行。

一质量为m、电荷量为q的粒子,从y轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第Ⅳ象限,又经过磁场从y轴上的某点进入第Ⅲ象限,且速度与y轴负方向成45°角,不计粒子所受的重力。

求:(1)电场强度E的大小;(2)粒子到达a点时速度的大小和方向;(3)abc区域内磁场的磁感应强度B的最小值。

6、如图,平行金属板倾斜放置,AB长度为L,金属板与水平方向的夹角为θ,一电荷量为-q、质量为m的带电小球以水平速度v0进入电场,且做直线运动,到达B点。

离开电场后,进入如下图所示的电磁场(图中电场没有画出)区域做匀速圆周运动,并竖直向下穿出电磁场,磁感应强度为B。

试求:(1)带电小球进入电磁场区域时的速度v。

(2)带电小球在电磁场区域做匀速圆周运动的时间。

(3)重力在电磁场区域对小球所做的功。

7、在直角坐标系x O y中,第一象限内存在沿y轴负方向的有界电场,其中的两条边界分别与O x、O y重合,电场强度大小为E。

在第二象限内有垂直纸面向里的有界磁场(图中未画出),磁场边界为矩形,其中的一个边界与y轴重合,磁感应强度的大小为B。

一质量为m,电量为q的正离子,从电场中P点以某初速度沿-x方向开始运动,经过坐标(0,L)的Q点时,速度大小为,方向与-y方向成30°,经磁场偏转后能够返回电场,离子重力不计。

求:(1)正离子在P点的初速度;(2)矩形磁场的最小面积;(3)离子在返回电场前运动的最长时间。

8、如图所示,在以O为圆心,半径为R=10cm的圆形区域内,有一个水平方向的匀强磁场,磁感应强度大小为B=0.1T,方向垂直纸面向外。

竖直平行放置的两金属板A、K相距为d=20mm,连在如图所示的电路中,电源电动势E=91V,内阻r=1Ω定值电阻R1=10Ω,滑动变阻器R2的最大阻值为80Ω,S1、S2为A、K板上的两上小孔,且S1、S2跟O点在垂直极板的同一直线上,OS2=2R,另有一水平放置的足够长的荧光屏D,O点跟荧光屏D之间的距离为H=2R。

比荷为2×105C/kg的正离子流由S1进入电场后,通过S2向磁场中心射去,通过磁场后落到荧光屏D上。

离子进入电场的初速度、重力、离子之间的作用力均可忽略不计。

问:(1)请分段描述正离子自S1到荧光屏D的运动情况。

(2)如果正离子垂直打在荧光屏上,电压表的示数多大?(3)调节滑动变阻器滑片P的位置,正离子到达荧光屏的最大范围多大?9、如图所示,有3块水平放置的长薄金属板a、b 和c,a、b之间相距为L。

紧贴b板下表面竖直放置半径为R的半圆形塑料细管,两管口正好位于小孔M、N处。

板a与b、b与c之间接有电压可调的直流电源,板b与c间还存在方向垂直纸面向外的匀强磁场。

当体积为V0、密度为r、电荷量为q的带负电油滴,等间隔地以速率v0从a板上的小孔竖直向下射入,调节板间电压U ba和U bc,当U ba=U1、U bc=U2时,油滴穿过b板M孔进入细管,恰能与细管无接触地从N 孔射出。

忽略小孔和细管对电场的影响,不计空气阻力。

求:(1)油滴进入M孔时的速度v1;(2)b、c两板间的电场强度E和磁感应强度B的值;(3)当油滴从细管的N孔射出瞬间,将U ba和B立即调整到和B´,使油滴恰好不碰到a板,且沿原路与细管无接触地返回并穿过M孔,请给出和B´的结果。

10、如图所示,电源电动势为E,内电阻为r,平行板电容器两金属板水平放置,开关S是闭合的,两板间一质量为m、电量为q的油滴恰好处于静止状态,G为灵敏电流计。

则以下说法正确的A.在将滑动变阻器滑片向上移动的过程中,油滴向上加速运动,G中有从b到a的电流B.在将滑动变阻器滑片向下移动的过程中,油滴向下加速运动,G中有从b到a的电流C.在将滑动变阻器滑片向上移动的过程中,油滴仍然静止,G中有从a到b的电流D.在将S断开后,油没仍保持静止状态,G中无电流通过11、如图所示的电路中,闭合电键,灯L1、L2正常发光,由于电路出现故障,突然发现灯L1变亮,灯L2变暗,电流表的读数变小,根据分析,发生的故障可能是()A.R1断路 B.R2断路C.R3短路 D.R4短路12、在如图所示电路中,电源电动势E=6V,内阻r=1Ω,保护电阻R0=3Ω,滑动变阻器总电阻R=20Ω,闭合电键S,在滑片P从a滑到b的过程中,正确的是()A.滑动变阻器消耗的功率先减小后增大B.滑动变阻器消耗的功率先增大后减小C.滑动变阻器消耗的功率先减小后增大,再减小后增大D.滑动变阻器消耗的功率先增大后减小,再增大后减小13、电源和一个水平放置的平行板电容器、三个电阻组成如图所示的电路。

当开关S闭合后,电容器中有一个带电液滴正好处于静止状态。

现将开关S断开,则以下判断正确的是A.液滴仍保持静止状态B.液滴将向下运动C.电容器上的带电量将减为零D.电容器将有一个瞬间的充电过程14、在如图所示的电路中,皆为定值电阻,为可变电阻,电源的电动势为E,内阻为.设电流表的读数为,的读数为,电压表的读数为.当的滑触点向图中端移动时()A.变大,变小,变小 B.变大,变小,变大C.变小,变大,变大 D.变小,变大,变小参考答案一、计算题1、2、解:(1)小球恰能通过a点,小球第一次到达a点的速度为0,由动能定理有:qER﹣mgR=0…①故…②(2)设第二次到达a点的速度为vn,由动能定理有:…③到达最高点时小球对轨道恰好无压力,由牛顿第二定律有:…④联立②③④得答:(1)电场强度至少为.(2)匀强磁场的磁感应强度.3、解:粒子运动路线如图示有L=4R ①粒子初速度为v,则有 qvB=mv2/R ②由①、②式可算得 v=qBL/4m ③设粒子进入电场作减速运动的最大路程为,加速度为a, v2=2a④qE=ma ⑤粒子运动的总路程 s=2πR+2⑥由①、②、④、⑤、⑥式,得 s=πL/2+qB2L2/(16mE) ⑦4、解:(1)(2分)(2)第一次碰前在档板处的机械能为(1分)第一次碰后在档板处的机械能为(1分)滑块第一次与挡板碰撞过程中损失的机械能=(1分)(3)由(2)的结果知每碰撞损失50%的机械能,因此有路程为:=0.6m5、【知识点】带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.I3 K2【答案解析】(1)(2)v=v0,与x轴正方向成45°角斜向右下方(3).解析:(1)设粒子在电场中运动的时间为t,则有x = v0t = 2h y =at 2 = h qE = ma联立以上各式可得E =(2)粒子达到a点时沿负y方向的分速度为vy = at = v0所以v = = v0 方向指向第IV象限与x轴正方向成45°角(3)粒子在磁场中运动时,有qvB = m当粒子从b点射出时,磁场的磁感应强度为最小值,此时有r = L 所以B =【思路点拨】(1)粒子在电场中做类平抛运动,水平位移和竖直位移均已知,由牛顿第二定律和运动学公式,运用运动的分解法可求出场强大小E.(2)由速度的合成法求出粒子到达a点时速度大小和方向,由几何知识确定粒子经过a点时的方向.(3)三角形区域内的磁场方向垂直纸面向里,当粒子刚好与BC边相切时,磁感应强度最小,作出轨迹,由几何知识求出最小半径,由牛顿第二定律即可求出磁感应强度的最小值.该题考查了有边界电磁场的问题,在电场中的偏转,利用平抛运动的知识求解;粒子在有边界的匀强磁场中运动,利用几何关系求解运动半径和转过的圆心角是解决问题的关键.6、【命题立意】主要考查带电粒子在有界电磁场中的运动问题【思路点拨】带电粒子在电磁场中的运动是历年高考考查的热点之一。

分析问题的关键在于分析粒子在电场、磁场中运动状态,各种运动之间的速度关联如何以及画出粒子的运动轨迹。

注意粒子在边界电场、磁场中出进磁场的速度大小与方向为该题求解的突破口。

本题考查考生综合应用学科内知识分析解决物理问题的能力。

【答案】(1)(2)(3)【解析】(1)对带电小球进行受力分析,带电小球受重力mg和电场力F,F合=F sinθ,mg=F cosθ(1分)解得F合=mg tanθ(1分)根据动能定理,解得(2分)(2)带电小球进入电磁场区域后做匀速圆周运动,说明电场力和重力平衡,带电小球只在洛伦兹力作用下运动。

相关主题