当前位置:
文档之家› 离心式压缩机防喘振控制设计讲解
离心式压缩机防喘振控制设计讲解
固定极限流量法:如图2-2所示。让压缩机通过的流量总是大于某一定值流量Gp,来达到对压缩机喘振的控制。
图2-2固定极限流量
可变极限流量法:如图2-3所示。是设置极限流量跟随着转速而变的一种防喘振控制。
图2-3可变极限流量控制
2.2所选控制方案介绍
针对本课题,我选择固定极限流量单回路防喘振控制方案。该方案的策略假设在最大转速下,压缩机的喘振点流量为Qp(已经考虑了安全余量),如果能够使压缩机入口流量总是大于该临界流量Qp就能保证压缩机不发生喘振。控制方案是当入口流量小于该临界流量Qp时,打开旁路控制阀,使出口的部分介质返回到入口,直到使入口流量大于Qp为止。图2-4所示为固定极限流量防喘振控制系统的结构示意图。
1.2喘振的工作原理及防治
压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。取流量安全下限作为调节器的规定值。当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。压缩机工作效率高,在正常工况条件下运行平稳,压缩气流无脉动,对其所输送介质的压力、流量、温度变化的敏感性相对较大,容易发生喘振造成严重事故。所以应尽力防止压缩机进入喘振工况。喘振现象是完全可以得到有效控制的,如图(1)所示,根据离心压缩机在不同工况条件下的性能曲线,只要我们把压缩机的最小流量控制在工作区(控制线内),压缩机即可正常工作。喘振的标志是一最小流量点,低于这个流量即出现喘振。因此需要有一个防止压缩机发生喘振的控制系统,限制压缩机的流量不会降低到这种工况下的最低允许值。即不会使压缩机进入喘振工况区域内。
ⅰ.作为被控变量,其信号最好能够直接测量获得,并且测量和变送环节的滞后也要比较小;
ⅱ.若被控变量信号无法直接获取,可选则与之有单值函数关系的间接参数作为被控变量;
1概述
1.1压缩机喘振及其危害
压缩机运行中一个特殊现象就是喘振。防止喘振是压缩机运行中极其重要的问题。许多事实证明,压缩机大量事故都与喘振有关。喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。喘振会造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振的出现轻则使压缩机停机,中断生产过程造成经济损失,重则造成压缩机叶片损坏,造成人员伤害;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废。
管网的特性曲线和压缩机的特性曲线的交点恰好能满足上述要求,这就是压缩机和管网的联合运行点,如图2-1中的A点和B点。
图2-1压缩机和管需要时工作转速下的吸入流量大于喘振点的流量Qp就可以了。因此,当所需的流量小于喘振点的流量时,如生产负荷下降时,需要将出口的流量旁路返回到入口,或将部分出口介质放空,以增加入口流量。满足大于喘振点流量的控制要求最基本的控制方法是最小流量极限控制,这种方法又分为两种:固定极限流量和可变极限流量。
图2-4固定极限流量防喘振控制系统
表2-1固定极限流量控制项目表
项目
旁路流量控制
固定极限流量防喘振控制
监测点位置
来自管网或送入管网的流速
压缩机的入口流量
控制方法
控制出口流量,流量过大时开旁路阀
控制入口流量,流量过小时开旁路阀
正常时阀的开度
正常时,控制阀有一定开度
正常时,控制阀关闭
积分饱和
正常时,偏差不会长期存在,无积分饱和
图2-5单回路控制系统方框图
2.4被控变量的选择
在一个生产过程中,可能发生波动的工艺变量很多,但并非对所有的变量都要加以控制。一个化工厂的操作控制大体上可以分为三类,即物料平衡控制和能量平衡控制、产品质量或成分控制、限制条件或软限保护的控制。因而在进行自动控制系统设计时,应深入了解工艺过程,找出对稳定生产、对产品的产量和质量、对确保经济效益和安全生产有决定性作用的工艺变量,或者人工操作过于频繁、紧张,难以满足工艺要求的工艺变量,作为被控变量来设计自动控制系统。这里提出几个选择的基本原则。
图1-2喘振区域的界定办法
2整体控制方案的确定
2.1压缩机防喘振控制系统阐述
通常把为输送气体连接压缩机的管道、容器等全套设备,包括进、排气管线,称为管网。压缩机进口气体压力为风,经过压缩机增压至肌,经过管道排出,压力下降到肌。压缩机的输气量GD和管网的流量GR相等,或者说压缩机的排气压力等于管网的进口压力肌,压缩机和管网就能稳定运行,即GD=GR或PD=PR。
偏差长期存在,存在积分饱和问题
2.3单回路控制系统
在现代工业生产装置自动化过程中,即使在计算机控制获得迅速发展的今天,单回路控制系统仍在非常广泛的应用。据统计,在一个年产30万吨合成氨的现代化大型装置中,约有85%的控制系统是单回路控制系统。所以,掌握单回路控制系统的设计原则应用对于实现过程装置的自动化具有十分重要的的意义。单回路控制系统的特点是结构简单,投资少,易于调整,投运,又能满足一般生产过程的工艺要求。单回路控制系统一般由被控过程WO(s)、测量变送器Wm(s)、调节器Wc(s)和调节阀Wv(s)等环节组成,如图2-5所示为单回路控制系统的基本结构框图。
图1-1压缩机性能曲线与防喘振控制原理图
压缩机的防喘振条件为:△P≥a(p2±bp1)
式中:△p——进口管路内测量流量的孔板前后压差
p1——进口处压力
p2——出口处压力
a、b——与压比、温度、孔板流量计的孔板系数有关的参数,可通过热工计算机和实验取得。
1.3喘振区域的确定
压缩机性能曲线表示出口压力随气体流量而变化的曲线;管网特性曲线是管道进口压力随气体流量而变化的曲线。两条曲线的交点是压缩机的工作点,工作点的横坐标是气体流量,纵坐标是实际排气压力,如图2中,驼峰的最高点K,凡是压缩机工作点位于K点以右的下降部分,为稳定工作区,工作点位于K点以左的曲线下降部分为喘振区。