考研数学讲座(1)考好数学的基点“木桶原理”已经广为人所知晓。
但真要在做件事时找到自身的短处,下意识地有针对性地采取措施,以求得满意的结果。
实在是一件不容易的事。
非数学专业的本科学生与数学专业的学生的最基本差别,在于概念意识。
数学科学从最严密的定义出发,在准确的概念与严密的逻辑基础上层层叠叠,不断在深度与广度上发展。
形成一棵参天大树。
在《高等数学》中,出发点处就有函数,极限,连续,可导,可微等重要概念。
在《线性代数》的第一知识板块中,最核心的概念是矩阵的秩。
而第二知识板块中,则是矩阵的特征值与特征向量。
在《概率统计》中,第一重要的概念是分布函数。
不过,《概率》不是第一层次基础课程。
学习《概率》需要学生有较好的《高等数学》基础。
非数学专业的本科学生大多没有概念意识,记不住概念。
更不会从概念出发分析解决问题。
基础层次的概念不熟,下一层次就云里雾里了。
这是感到数学难学的关键。
大学数学教学目的,通常只是为了满足相关本科专业的需要。
教师们在授课时往往不会太重视,而且也没时间来进行概念训练。
考研数学目的在于选拔,考题中基本概念与基本方法并重。
这正好击中考生的软肋。
在考研指导课上,往往会有学生莫名惊诧,“大一那会儿学的不一样。
”原因就在于学过的概念早忘完了。
做考研数学复习,首先要在基本概念与基本运算上下足功夫。
按考试时间与分值来匹配,一个4分的选择题平均只有5分钟时间。
而这些选择题却分别来自三门数学课程,每个题又至少有两个概念。
你可以由此体验选拔考试要求你对概念的熟悉程度。
从牛顿在硕士生二年级的第一篇论文算起,微积分有近四百年历史。
文献浩如烟海,知识千锤百炼。
非数学专业的本科生们所接触的,只是初等微积分的一少部分。
方法十分经典,概念非常重要。
学生们要做的是接受,理解,记忆,学会简单推理。
当你面对一个题目时,你的自然反应是,“这个题目涉及的概念是 - - -”,而非“在哪儿做过这道题”,才能算是有点入门了。
你要考得满意吗?基点不在于你看了多少难题,关键在于你是否对基本概念与基本运算非常熟悉。
阳春三月风光好,抓好基础正当时。
考研数学讲座(2)笔下生花花自红在爱搞运动的那些年代里,数学工作者们经常受到这样的指责,“一支笔,一张纸,一杯茶,鬼画桃符,脱离实际。
”发难者不懂基础研究的特点,不懂得考虑数学问题时“写”与“思”同步的重要性。
也许是计算机广泛应用的影响,今天的学生们学习数学时,也不太懂得“写”的重要性。
考研的学生们,往往拿着一本厚厚的考研数学指导资料,看题看解看答案或看题想解翻答案。
动笔的时间很少。
数学书不比小说。
看数学书和照镜子差不多,镜子一拿走,印象就模糊。
科学的思维是分层次的思维。
求解一个数学问题时,你不能企图一眼看清全路程。
你只能踏踏实实地考虑如何迈出第一步。
或“依据已知条件,我首先能得到什么?”(分析法);或“要证明这个结论,就是要证明什么?”(综合法)。
在很多情形下,写出第一步与不写的感觉是完全不同的。
下面是一个简单的例。
“连续函数与不连续函数的和会怎样?”写成“连续A + 不连续B = ?”后就可能想到,只有两个答案,分别填出来再说。
(穷尽法)。
如果,“连续A + 不连续B = 连续C”移项,则“连续C -连续A = 不连续B”这与定理矛盾。
所以有结论:连续函数与不连续函数的和一定不连续。
有相当一些数学定义,比如“函数在一点可导”,其中包含有计算式。
能否掌握并运用这些定义,关键就在于是否把定义算式写得滚瓜烂熟。
比如,题面上有已知条件 f ′(1)>0,概念深,写得熟的人立刻就会先写出h趋于0时, lim( f(1+h)-f(1))/h>0然后由此自然会联想到,下一步该运用极限的性质来推理。
而写不出的人就抓瞎了。
又比如《线性代数》中特征值与特征向量有定义式 Aα=λα,α≠ 0 ,要是移项写成(A-λE)α= 0,α≠ 0,这就表示α是齐次线性方程组(A-λE)X = 0 的非零解,进而由理论得到算法。
数学思维的特点之一是“发散性”。
一个数学表达式可能有几个转换方式,也许从其中一个方式会得到一个新的解释,这个解释将导引我们迈出下一步。
车到山前自有路,你得把车先推到山前啊。
望山跑死马。
思考一步写一步,观测分析迈下步。
路只能一步步走。
陈景润那篇名扬世界的“1+2”论文中有28个“引理”,那就是他艰难地走向辉煌的28步。
对于很多考生来说,不熟悉基本计算是他们思考问题的又一大障碍。
《高等数学》感觉不好的考生,第一原因多半是不会或不熟悉求导运算。
求导运算差,讨论函数的图形特征,积分,解微分方程等,反应必然都慢。
《线性代数》中矩阵的乘法与矩阵乘积的多种分块表达形式,那是学好线性代数的诀窍。
好些看似很难的问题,选择一个分块变形就明白了。
《概率统计》中,要熟练地运用二重积分来计算二维连续型随机变量的各类问题。
对于考数学三的同学来说,二重积分又是《高等数学》部分年年必考的内容。
掌握了二重积分,就能在两类大题上得分。
要考研吗,要去听指导课吗,一定要自己先动笔,尽可能地把基本计算练一练。
我一直向考生建议,临近考试的一段时间里,不仿多自我模拟考试。
在限定的考试时间内作某年研考的全巻。
中途不翻书,不查阅,凭已有能力做到底。
看看成绩多少。
不要以为你已经看过这些试卷了。
就算你知道题该怎么做,你一写出来也可能会面目全非。
多动笔啊,“写”“思”同步步履轻,笔下生花花自红。
考研数学讲座(3)极限概念要体极限概念是微积分的起点。
说起极限概念的历史,学数学的都多少颇为伤感。
很久很久以前,西出阳关无踪影的老子就体验到,“一尺之竿,日取其半,万世不竭。
”近两千年前,祖氏父子分别用园的内接正6n边形周长替带园周长以计算园周率;用分割曲边梯形为n个窄曲边梯形,进而把窄曲边梯形看成矩形来计算其面积。
他们都体验到,“割而又割,即将n取得越来越大,就能得到越来越精确的园周率值或面积。
”国人朴实的体验延续了一千多年,最终没有思维升华得到极限概念。
而牛顿就在这一点上率先突破。
极限概念起自于对“过程”的观察。
极限概念显示着过程中两个变量发展趋势的关联。
自变量的变化趋势分为两类,一类是x →x0 ;一类是x →∞,“当自变量有一个特定的发展趋势时,相应的函数值是否无限接近于一个确定的数a ?”如果是,则称数a为函数的极限。
“无限接近”还不是严密的数学语言。
但这是理解极限定义的第一步,最直观的一步。
学习极限概念,首先要学会观察,了解过程中的变量有无一定的发展趋势。
学习体验相应的发展趋势。
其次才是计算或讨论极限值。
自然数列有无限增大的变化趋势。
按照游戏规则,我们还是说自然数列没有极限。
自然数n趋于无穷时,数列1/n的极限是0;x趋于无穷时,函数1/x的极限是0;回顾我们最熟悉的基本初等函数,最直观的体验判断是,x趋于正无穷时,正指数的幂函数都与自然数列一样,无限增大,没有极限。
x趋于正无穷时,底数大于1的指数函数都无限增大,没有极限。
x →0+ 时,对数函数lnx趋于-∞;x趋于正无穷时,lnx无限增大,没有极限。
x →∞时,正弦sinx与余弦conx都周而复始,没有极限。
在物理学中,正弦y = sinx的图形是典型的波动。
我国《高等数学》教科书上普遍都选用了“震荡因子”sin(1/x)。
当x趋于0时它没有极限的原因是震荡。
具体想来,当x由0.01变为0.001时,只向中心点x = 0靠近了一点点,而正弦sinu却完成了140多个周期。
函数的图形在 +1与-1之间上下波动140多次。
在x = 0的邻近,函数各周期的图形紧紧地“挤”在一起,就好象是“电子云”。
当年我研究美国各大学的《高等数学》教材时,曾看到有的教材竟然把函数y = sin(1/x)的值整整印了一大页,他们就是要让学生更具体地体验它的数值变化。
x趋于0时(1/x)sin(1/x)不是无穷大,直观地说就是函数值震荡而没有确定的发展趋势。
1/x为虎作伥,让震荡要多疯狂有多疯狂。
更深入一步,你就得体验,在同一个过程中,如果有多个变量趋于0,(或无限增大。
)就可能有的函数趋于0时(或无限增大时)“跑得更快”。
这就是高阶,低阶概念。
考研数学还要要求学生对极限有更深刻的体验。
多少代人的千锤百炼,给微积分铸就了自己的倚天剑。
这就是一套精密的极限语言,(即ε–δ语言)。
没有这套语言,我们没有办法给出极限定义,也无法严密证明任何一个极限问题。
但是,这套语言是高等微积分的内容,非数学专业的本科学生很难搞懂。
数十年来,考研试卷上都没有出现过要运用ε–δ语言的题目。
研究生入学考题中,考试中心往往用更深刻的体验来考查极限概念。
这就是“若x趋于∞时,相应函数值f(x)有正的极限,则当∣x∣充分大时,(你不仿设定一点x0,当∣x∣>x0时,) 总有f(x)>0 ”*“若x趋于x0时,相应函数值f(x)有正的极限,则在x0的一个适当小的去心邻域内,f(x)恒正”这是已知函数的极限而回头观察。
逆向思维总是更加困难。
不过,这不正和“近朱者赤,近墨者黑”一个道理吗。
除了上述苻号体验外,能掌握下边简单的数值体验则更好。
若x趋于无穷时,函数的极限为0,则x的绝对值充分大时,(你不仿设定一点x0,当∣x∣>x0时,) 函数的绝对值恒小于1若x趋于无穷时,函数为无穷大,则x的绝对值充分大时,( 你不仿设定一点x0 ,当∣x∣>x0时,) 函数的绝对值全大于1*若x趋于0时,函数的极限为0,则在0的某个适当小的去心邻域内,或x的绝对值充分小时,函数的绝对值全小于1(你不仿设定有充分小的数δ>0,当0<∣x∣<δ时,函数的绝对值全小于1 )没有什么好解释的了,你得反复领会极限概念中“无限接近”的意义。
你可以试着理解那些客观存在,可以自由设定的点x0,或充分小的数δ>0,并利用它们。
考研数学讲座(4)“存在”与否全面看定义,是数学的基本游戏规则。
所有的定义条件都是充分必要条件。
即便有了定义,为了方便起见,数学工作者们通常会不遗余力地去寻觅既与定义等价,又更好运用的描述方式。
讨论极限的存在性,就有如下三个常用的等价条件。
1.海涅定理观察x 趋于x0的过程时,我们并不追溯x从哪里出发;也没有考虑它究竟以怎样的方式无限靠近x.0 ;我们总是向未来,看发展。
因而最直观的等价条件就是海涅定理:定理(1)极限存在的充分必要条件是,无论x以何种方式趋于x0 ,相应的函数值总有相同的极限A存在。
这个定理条件的“充分性”没有实用价值。
事实上我们不可能穷尽x 逼近x0的所有方式。
很多教科书都没有点出这一定理,只是把它的“必要性”独立成为极限的一条重要性质。
即唯一性定理:“如果函数(在某一过程中)有极限存在,则极限唯一。
”唯一性定理的基本应用之一,是证明某个极限不存在。
2.用左右极限来描述的等价条件用ε–δ语言可以证得一个最好用也最常用的等价条件:定理(2)极限存在的充分必要条件为左、右极限存在且相等。