当前位置:文档之家› 相移键控(PSK)和差分相移键控(DPSK)的仿真与设计

相移键控(PSK)和差分相移键控(DPSK)的仿真与设计

题目相移键控(PSK)和差分相移键控(DPSK)的仿真与设计摘要计算机仿真软件在通信系统工程设计中发挥着越来越重要的作用。

利用MATLAB作为编程工具,设计了相移键控系统的模型,并且对模型的方针流程以及仿真结果都给出具体详实的分析,为实际系统的构建提供了很好的依据。

数字调制是通信系统中最为重要的环节之一,数字调制技术的改进也是通信系统性能提高的重要途径。

本文首先分析了数字调制系统的PSK和PSK的调制解调方法,然后,运用Matlab设计了这两种数字调制解调方法的仿真程序。

通过仿真,分析了这两种调制解调过程中各环节时域和频域的波形,并考虑了信道噪声的影响。

通过仿真更深刻地理解了数字调制解调系统基本原理。

最后,对两种调制解调系统的性能进行了比较。

关键词2PSK 2DPSK Matlab 设计与仿真1、设计内容、意义1.1了解MATLABMATLAB是一种交互式的以矩阵为基础的系统计算平台,它用于科学和工程的计算与可视化。

它的优点在于快速开发计算方法,而不在于计算速度。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,雇佣MATLAB可以进行矩阵、控制设计、信号处理与通信、图像处理、信号检测等领域。

目前,MATLAB集科学计算(computation) 、可视化(visualization)、编程(programming)于一身,并提供了丰富的Windows图形界面设计方法。

MATLAB在美国已经作为大学工科学生必修的计算机语言之一,近年来,MATLAB语言已在我国推广使用,现在已应用于各学科研究部门和高等院校。

1.2设计内容数字信号的传输可分为基带传输和带通传输,实际中的大多数的信道(如无线信道)因具有带通特性而不能直接传送基带信号,这是因为基带信号往往具有丰富的低频分量,为了使数字信号能在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道相匹配,这种用基带信号控制载波,把数字基带信号变换成数字带通信号的过程称为数字调制。

在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调,而包括调制和解调的过程数字传输系统叫做数字带通传输系统。

通过改变载波幅度、频率、相位,来传输数字基带信号,所以带通传输也叫做载波传输。

利用数字信号的离散取值特点通过开关键控制载波,从而实现数字调制,此法通常称为键控法,根据键控的不同可分为振幅键控,频率键控和相位键控。

此次试验报告首先分析了数字调制系统的几种基本调制解调方法,然后,运用Matlab设计了两种数字调制解调方法的仿真程序,主要包括2PSK,2DPSK。

通过仿真,分析了这两种调制解调过程中各环节时域和频域的波形,并考虑了信道噪声的影响。

通过仿真更深刻地理解了数字调制解调系统基本原理。

最后,对这两种调制解调系统的性能进行了比较。

1.3设计意义由于传输失真、传输损耗以及保证带内特性的原因,基带信号不适合在各种信道上进行长距离传输。

为了进行长途传输,必须对数字信号进行载波调制,将信号频谱搬移到高频处才能在信道中传输。

因此,大部分现代通信系统都使用数字调制技术。

另外,由于数字通信具有建网灵活,容易采用数字差错控制技术和数字加密,便于集成化,并能够进入综合业务数字网(ISDN 网),所以通信系统都有由模拟方式向数字方式过渡的趋势。

因此,对数字通信系统的分析与研究越来越重要,数字调制作为数字通信系统的重要部分之一,对它的研究也是有必要的。

通过对调制系统的仿真,我们可以更加直观的了解数字调制系统的性能及影响性能的因素,从而便于改进系统,获得更佳的传输性能。

计算机仿真软件在通信系统工程设计中发挥着越来越重要的作用。

利用MATLAB 作为编程工具,设计相移键控系统的模型,并且对模型的方针流程以及仿真结果都给出具体详实的分析,为实际系统的构建提供了很好的依据。

同时加深对所学的通信原理知识理解,培养专业素质;通过专业课程设计掌握通信中常用的信号处理方法,能够分析简单通信系统的性能。

2、相关理论2.1数字调制与解调的相关原理在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。

然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。

必须用数字基带信号对载波进行调制,产生各种已调数字信号。

数字调制与模拟调制原理是相同的,一般可以采用模拟调制的方法实现数字调制。

但是,数字基带信号具有与模拟基带信号不同的特点,其取值是有限的离散状态。

这样,可以用载波的某些离散状态来表示数字基带信号的离散状态。

2.2二进制相移键控(2PSK)相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。

在2PSK 中,通常用初始相位0和π分别表示二进制“1”和“0”。

因此,2PSK 信号的时域表达式为()n c PSK t A t e ϕω+=cos )(2(2.2-1)其中,n ϕ表示第n 个符号的绝对相位:时发送时发送”“”“010n ⎩⎨⎧=πϕ(2.2-2)因此,式(2.2-1)可以改写为PP tA tA t e c c PSK -⎩⎨⎧-=1cos cos )(2概率为概率为ωω (2.2-3)由于表示信号的两种码元的波形相同,极性相反,故2PSK 信号一般可以表述为一个双极性(bipolarity )全占空(100% duty ratio )矩形脉冲序列与一个正弦载波的相乘,即t t s t e c PSK ωcos )()(2=(2.2-4)其中∑-=ns n nT t g a t s )()( (2.2-5)这里,g(t)是脉宽为s T 的单个矩形脉冲,而n a 的统计特性为P P a n -⎩⎨⎧-=111概率为概率为(2.2-6)即发送二进制符号“0”时(n a 取+1),)(2t e PSK 取0相位;发送二进制符号“1”时(n a 取-1),)(2t e PSK 取π相位。

这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制绝对相移方式。

2PSK 信号的调制原理框图如图2-1所示。

与2ASK 信号的产生方法相比较,只是对s(t)的要求不同,在2ASK 中s(t)是单极性的,而在2PSK 中s(t)是双极性的基带信号。

(a)模拟调制方法(b)键控法图2-12PSK信号的调制原理框图2PSK信号的解调通常采用相干解调法,解调原理框图如图2-2所示。

在相干解调中,如何得到与接收的2PSK信号同频同相的相干载波是个关键问题。

e2PSK (t)图2-2 2PSK信号的解调原理框图2.3 二进制差分相移键控(2DPSK)在2PSK信号中,相位变化是以未调载波的相位作为参考基准的。

由于它利用载波相位的绝对数值表示数字信息,所以又称为绝对相移。

2PSK相干解调时,由于载波恢复中相位有0、π模糊性,导致解调过程出现“反向工作”现象,恢复出的数字信号“1”和“0”倒置,从而使2PSK难以实际应用。

为了克服此缺点,提出了二进制差分相移键控(2DPSK)方式。

2DPSK 是利用前后相邻码元的载波相对相位变化传递数字信息,所以又称相对相移键控。

假设ϕ∆为当前码元与前一码元的载波相位差,可定义一种数字信息与ϕ∆之间的关系为”“”“010表示数字信息表示数字信息⎩⎨⎧=∆πϕ (2.3-1)于是可以将一组二进制数字信息与其对应的2DPSK 信号的载波相位关系示例如下:二进制数字信息:1 1 0 1 0 0 1 1 02DPSK 信号相位: (0) π 0 0 π π π 0 π π或(π) 0 π π 0 0 0 π 0 0数字信息与ϕ∆之间的关系也可定义为”0“”1“0表示数字信息表示数字信息⎩⎨⎧=∆πϕ由此示例可知,对于相同的基带数字信息序列,由于初始相位不同,2DPSK 信号的相位并不直接代表基带信号,而前后码元相对相位的差才唯一决定信息符号。

为了更直观地说明信号码元的相位关系,我们可以用矢量图来表述。

按照(2.3-1)的定义关系,我们可以用如图2-3(a )所示的矢量图来表示,图中,虚线矢量位置称为基准相位。

在绝对相移中,它是未调制载波的相位;在相对相移中,它是前一码元的载波相位,当前码元的相位可能是0或π。

但是按照这种定义,在某个长的码元序列中,信号波形的相位可能仍没有突跳出点,致使在接收端无法辨认信号码元的起止时刻。

这样,2DPSK 方式虽然解决了载波相位不确定性问题,但是码元的定时问题仍没有解决。

为了解决定时问题,可以采用图2-3(b )所示的相移方式。

这时,当前的码元的相位相对于前一码元的相位改变±π/2。

因此,在相邻码元之间必定有相位突跳。

在接收端检测此相位突跳就能确定每个码元的起止时刻,即可提供码元定时信息。

根据ITU-T 建议,图2-3(a )所示的相移方式称为A 方式;图2-3(b )所示的相移方式称为B 方式。

由于后者的优点,目前被广泛采用。

2DPSK 信号的产生方法:先对二进制数字基带信号进行差分编码,即把表示数字信息的序列的绝对码变换成相对码(差分码),然后再根据相对码绝对调相,从而产生二进制差分相移键控信号。

2DPSK 信号调制器原理框图如图2-4所示。

差分码可取传号差分码或空号差分码。

其中,传号差分码的编码规则为1-⊕=n n n b a b(2.3-2)式中:⊕为模2加;1-n b 为n b 的前一码元,最初的1-n b 可任意设定。

式(2.3-2)称为差分编码(码变换),即把绝对码变换为相对码;其逆过程称为差分译码(码反变换),即1-⊕=n n n b b a(2.3-3)2DPSK 信号的解调方法之一是相干解调(极性比较法)加码反变换法。

其解调原理是:对2DPSK 信号进行相干解调,恢复出相对码,再经码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。

在解调过程中,由于载波相位模糊性的影响,使得解调图2-3 2DPSK 信号的矢量图参考相位参考相位π/2相位-π/2相位 (a) A 方式(b) B 方式图2-4 2DPSK 信号调制器原理框图出的相对码也可能是“1”和“0”倒置,但经差分译码(码反变换)得到的绝对码不会发生任何倒置的现象,从而解决了载波相位模糊性带来的问题。

2DPSK的相干解调器原理框图如图2-5所示。

e2DPSK (t)图2-52DPSK相干解调器原理框图2DPSK信号的另一种解调方法是差分相干解调(相位比较法),其原理框图如图2-6所示。

用这种方法解调进不需要专门的相干载波,只需由收到的2DPSK信号延时一个码元间隔Ts,然后与2DPSK信号本身相乘。

相乘器起着相位比较的作用,相乘结果反映了前后码元的相位差,经低通滤波后再抽样判决,即可直接恢复原始数字信息,故解调器中不需要码反变换器。

相关主题