当前位置:文档之家› 理工科大学物理知识点总结及典型例题解析

理工科大学物理知识点总结及典型例题解析

第一章 质点运动学本章提要1、 参照系:描述物体运动时作参考的其他物体。

2、 运动函数:表示质点位置随时间变化的函数。

位置矢量:k t z j t y i t x t r r)()()()(++==位置矢量:)()(t r t t r r-∆+=∆ 一般情况下:r r∆≠∆3、速度和加速度: dtrd v= ; 22dt r d dt v d a ==4、匀加速运动: =a 常矢量 ; t a v v +=0 2210t a t v r+=5、一维匀加速运动:at v v +=0 ; 2210at t v x += ax v v 2202=-6、抛体运动: 0=x a ; g a y -=θcos 0v v x = ; gt v v y -=θsin 0t v x θcos 0= ; 2210sin gt t v y -=θ7、圆周运动:t n a a a+=法向加速度:22ωR Rv a n ==切向加速度:dtdv a t =8、伽利略速度变换式:u v v+'=【典型例题分析与解答】1.如图所示,湖中有一小船。

岸上有人用绳跨过定滑轮拉船靠岸。

设滑轮距水面高度为h ,滑轮到原船位置的绳长为l 。

当人以匀速v 拉绳,船运动的速度v '为多少解:取如图所示的坐标轴, 由题知任一时刻由船到滑轮的绳长为l=l 0-vt 则船到岸的距离为:22022)(-h -vt l -h l x ==因此船的运动速率为:2.一质点具有恒定的加速度2)46(m/s j i a+=,在t=0时刻,其速度为零, 位置矢量i r10= (m).求:(1)在任意时刻的速度和位置矢量;(2)质点在 xoy 平面的轨迹方程,并画出轨迹的示意图.解. (1)由加速度定义dtvd a=,根据初始条件 t 0=0 v 0=0 可得由dtr d v =及 t 0=0ir r100==得⎰⎰⎰+==t t r r dt j t i t dt v r d 0)46(0m j t i t j t i t r r ]2)310[(2322220 ++=++=(2)由以上可得质点的运动方程的分量式x=x(t) y=y(t) 即 x=10+3t 2y=2t 2消去参数t,得质点运动的轨迹方程为 3y=2x-20这是一个直线方程.由m i r100=知x 0=10m,y 0=0.而直线斜率 32===tga dy/dx k , 则1433'= a 轨迹方程如图所示3. 质点的运动方程为23010t t -x +=和22015t t-y =,(SI)试求:(1) 初速度的大小和方向;(2)加速度的大小和方向.解.(1)速度的分量式为 t -dx/dt v x 6010+==当t=0时,v 0x =-10m/s,v 0y =15m/s,则初速度的大小为01820200.v v v y x =+=m/s 而v 0与x 轴夹角为 1412300'== xy v v arctga(2)加速度的分量式为 260-xx ms dtdv a ==240-y y ms dt dv a == 则其加速度的大小为 17222.a a a y x =+=ms -2a 与x 轴的夹角为 1433'== -a a arctgxy β(或91326' )4. 一质点以25m/s 的速度沿与水平轴成30°角的方向抛出.试求抛出5s 后,质点的速度和距抛出点的位置.解. 取质点的抛出点为坐标原点.水平方向为x 轴竖直方向为y 轴, 质点抛出后作抛物线运动,其速度为 αcos 0v v x =则t=5s 时质点的速度为 v x =s v y =s质点在x,y 轴的位移分别为x=v 0x t= 060220.-gt t-v y y ==m 质点在抛出5s 后所在的位置为 )06025108(j .-i .j y i x r=+=m5.两辆小车A 、B 沿X 轴行驶,它们离出发点的距离分别为 XA=4t+t 2, XB= 2t 2+2t 3 (SI)问:(1)在它们刚离开出发点时,哪个速度较大(2)两辆小车出发后经过多少时间才能相遇(3)经过多少时间小车A 和B 的相对速度为零 解.(1) t /dt dx v A A 24+==当 t=0 时, v A =4m/s v B =0 因此 v A > v B(2)当小车A 和B 相遇时, x A =x B 即 322224t t t t +=+ 解得 t=0、 (无意义)(3)小车A 和B 的相对速度为零,即 v A -v B =0 3t 2+t-2=0 解得 t= . -1s(无意义).第二章 质点力学(牛顿运动定律)本章提要1、牛顿运动定律牛顿第一定律 o F =时 =v常矢量牛顿第二定律 k ma i ma i ma a m F z y x++==牛顿第三定律 'F F-= 2、技术中常见的几种力:重力 g m P= 弹簧的弹力 kx f -= 压力和张力滑动摩擦力 N f k k μ= 静摩擦力 N f s s μ≤3、基本自然力:万有引力、弱力、电磁力、强力。

4、用牛顿运动定律解题的基本思路:认物体→看运动→查受力(画示力图)→列方程5、国际单位制(SI)量纲:表示导出量是如何由基本量组成的幂次式。

【典型例题分析与解答】1. 一木块在与水平面成a角的斜面上匀速下滑.若使它以速度v0沿此斜面向上滑动,如图所示.证.选如图所示坐标,当木块匀速下滑时,mgsina-f =0因此木块受到的摩擦阻力为 f = mgsina (1)当木块上行时,由牛顿第二定律有 - mgsina - f=ma (2)联立(1)(2)式可得a= -2gsina式中负号表示木块沿斜面向上作匀减速直线运动.木块以初速v0开始向上滑至某高度时,v=0,由v2=v02+2as 可得木块上行距离为s=-v02/2a=v02/4gsina2.如图所示,已知F=×104N,m1=×103kg,m2=×103kg 两物体与平面间的摩擦系数为,设滑轮与绳间的摩擦系数均不计算.求质量m 2物体的速度及绳对它的拉力.解.如图所示,设m 2的加速度为a 2,m 1的加速度 为a1.由牛顿第二定律分别列出m 1,m 2程为由于滑轮质量、滑轮与绳之间的摩擦力不计,则有021=''-T T 考虑到2211T ',T T 'T ==,且绳子不被拉长,则有122a a = 联立上述各式,可得2121227844)2(22-m.s .m m m m g F-a =++=μ3.在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球.当小钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高解.如图所示,钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动.当它距碗底高为h 时,其向心加速度为θωωsin 22R r a n ==,钢球所受到的作用力为重力P 和碗壁对球的支持力N,其合力就是钢球匀速圆周运动所需的向心力F.由图 有 θωθsin sin 2mR N F ==`则 2ωmR N = (1) 考虑到钢球在垂直方向受力平衡,则有 mg P N ==θcos (2)由图可知 /R R-h )(cos =θ. 故有 2ωR-g/h =4. 一质量为m 的小球最最初位于如图所示的A 点,然后沿半径为r 的光滑圆弧的内表面ADCB 下滑.试求小球在点C 时的角速度和对圆弧表面的作用力.解.取图所示的坐标系,小球在运动过程中受重力P 和圆弧内表面的作用力N.由牛顿第二定律得小球在切向方向运动方向方程为 t t ma F = 即 mdv/dt a -mg =sin由 /dt rd ds/dt v α== 可得 /v rd dt α=. 将其代入上式后,有 ααd -rg vdv sin =根据小球从A 运动到C 的初末条件对上式两边进行积分,则有 ⎰⎰=απαα2)sin (0d rg vdv v 得αcos 2rg v =小球在C 点的角速度为 /r g v/r αωcos 2== 小球在法线方向的运动方程为 F n =ma n即 ααcos 2cos 2mg /r mv N-mg ==由此得小球对圆弧的作用力为 αcos 3mg --N N'==5.有一个可以水平运动的倾角为α的斜面,斜面上放一质量为m 的物体,物体与斜面间的静摩擦系数为μ,如果要使物体在斜面上保持静止,斜面的水平加速度应如何解.物体m 在斜面上保持静止,因而具有和斜面相同的加速度a.可以直观的看出,如果斜面的加速度太小,则物体将向下滑;如果斜面的加速度过大, 则物体会向上滑.(1)假定物体静止在斜面上,但有向下滑的趋势;物体受力分析如图(1)所示,由牛顿运动定律有N f μ≤则 g aμa aa-μa sin cos cos sin +≥(1)假定物体静止在斜面上,但有向上滑的趋势;物体受力分析如图(2)所示,由牛顿运动定律有)(sin cos -a m -N f =-ααN f μ≤则 g aμa aμa a sin cos cos sin -+≤故g aμa aμa a g a μa a a-μsin cos cos sin sin cos cos sin -+≤≤+第三章 功与能本章提要1、功:r d F dW⋅=2、动能定理:21212221mv mv W -=3、保守力与非保守力:4、势能:对保守内力可以引入势能概念 万有引力势能:rm m GE p 21-=以两质点无穷远分离为势能零点。

重力势能:mgh E p =以物体在地面为势能零点。

弹簧的弹性势能:221kxE p =以弹簧的自然伸长为势能零点。

5、机械能受恒定律:在只有保守内力做功的情况下,系统的机械能保持不变。

1、用力推地面上的石块.已知石块的质量为20kg,力的方向和地面平行. 推力随位移的增加而线性增加,即F=6x(SI).试求石块由x 1=16m 移到x 2= 20m 的过程中,推力所作的功.解.由于推力在作功过程中是一变力,按功的定义有2、一颗速率为700m/s 的子弹,打穿一木块后速率降为500m/s.如果让它继续穿过与第一块完全相同的第二块木板.求子弹的速率降到多少解.由动能定理可知,子弹穿过第一块和第二块木板时克服阻力所作的功分别为式中v 1为子弹初速率,v 2为穿过第一块木板后的速率,v 3为穿过第二块木板后的速率.由题意知两块木板完全相同,因此子弹穿过木板过程中克服阻力所作的功可认为相等,即 W 1=W 2,故有 2221232121212221mv -mv mv -mv = 由此得子弹穿过第二块木板后的速率为 m/s -v v v 100221223==3、.用铁锤把钉子敲入木板.设木板对钉子的阻力与钉子进入木板的深度成正比.若第一次敲击能把钉子打入木板m 101.0-2⨯.第二次打击时, 保持第一次打击钉子的速度,那么第二次能把钉子打多深.解.锤敲钉子使钉子获得动能.钉子钉入木板是使钉子将获得的动能用于克服阻力作功.由于钉子所受阻力f 与进入木板的深度x 成正比,即f=kx,其中k 为阻力系数.而锤打击钉子时,保持相同的速度,故钉子两次进入木板过程中所作功也相等, 所以有即钉子经两次敲击进入木板的总深度为.由此可知第二次打击使钉子进入木板的深度为 m .x-x d 004101==4、一半径为R 的光滑球固定在水平面上. 另有一个粒子从球的最高点由静止沿球面滑下.摩擦力略去不计.求粒子离开球的位置以及粒子在该位置的速度.解.如图所示,粒子在光滑球面上滑动时仅受球面支持力和地球引力 mg 的作用.由于N 始终与球的运动方向垂直,故系统机械能守恒.当粒子从最高点A 滑至离开球的位置B 时,有θcos 221mgR mv mgR +=根据牛顿第二定律,有21cos mv N mg R=-θ 而粒子刚好离开时,N=0.因此有 则物体刚离开球面处的角位置为 此时,粒子的速率为Rg gR v 32cos ==θ v 的方向与P 夹角为 8.4190=-=θa5、一劲度系数为K 的水平轻弹黉,一端固定在墙上,另一端系一质量为M 的物体A 放在光滑的水平面上.当把弹黉压缩x 0后,再靠着A 放一质量为m 的物体B,如图所示.开始时系统处于静止,若不计一切摩擦.试求:(1)物体A 和B 分离时,B 的速度;(2)物体A 移动过程中离开o 点的最大距离.解.(1)以A 、B 及弹黉为系统,假定A 、B 分离时的共同速度为v. 由机械能守恒定律,有2021221)(kx v m M =+则 0)(x m M K/v +=(2)若设x 为物体A 离开o 点的最大距离,由系统机械能守恒,有221221kx Mv =则0)(x m M M/x +=第四章 动量本章提要1、动量定理:合外力的冲量等于质点(或质点系)动量的增量。

相关主题