当前位置:文档之家› 脉搏传感器设计报告

脉搏传感器设计报告

为提高运用电子技术基本知识进行理论设计、实践创新以及独立工作、团队合作的能力,通过实践制作一个数字频率计,学会合理的利用集成电子器件制作基于数字电路和模拟电路的课程设计与制作。

电子脉搏计是用来测量一个人心脏跳动次数的电子仪器,也是心电图的主要组成部分。

它是用来测量频率较低的小信号。

要求:
(1)实现在1min内测量脉搏数;
(2)用数码管将测得的脉搏数用数字的形式显示;
(3)测量误差小于±4次/min。

二、方案设计与论证
1.设计框图
方案一
1)信号发生与采集将脉搏跳动信号传感器转换为与此相对应的电脉冲信号。

2)放大电路把传感器的微弱电流放大,微弱电压放大。

可采用高输入阻抗的非门进行放大。

3)低通滤波滤除空气中的高频,只让低频脉冲信号通过。

对脉搏信号进行采集的时候,空气中交流工频干扰最大,根据有源滤波的原理,在接至非门的输入与输出之间作为直流偏置电阻上并联一个电容。

4)整形电路可用两个非门组成的施密特触发器对放大后的信号进行整形。

5)定时电路用555定时器组成的单稳态触发器进行1分钟的精确定时。

6)计数、译码、显示用来读出脉搏数,并以十进制数的形式由数码管显示出来。

片CD4 0110有计数译码功能,数码管采用共阴数码管。

方案二
与方案一相比,信号发生与采集、定时电路、计数译码显示电路不变。

其他有所改变。

2)放大电路用普通运放进行发大,为达到高输入阻抗的要求,采用同相比例放大。

3)低通滤波在运放的反馈电阻上并联一个电容,达到滤波的效果。

4)整形电路通过运放组成的单限比较器进行脉冲整形。

方案二的放大电路除了在阻抗匹配方面略显弱势之外,使用更为普遍,。

为了探索非门再放大方面的应用,选择了方案一。

三、单元电路设计与参数计算
1.信号发生与采集
脉搏传感器的作用是将脉搏信号转换为响应的电冲信号。

脉搏传感器是脉象检测系统中重要的组成部分,其性能的好坏直接影响到后置电路的处理和结果的显示。

目前典型的脉搏传感器有以下三种:led/' target='_blank'>光电类、压阻类和压电类。

在这三种当中目前采用最多的是压电型传感器,其工作原理是利用敏感元件直接把压力转变为电信号。

本次课程设计中,在电路调试部分可利用函数信号发生器,使用正弦波模拟人体脉搏跳动。

函数信号发生器
2.放大与滤波电路
非门电路在高低电平转换之间,即载止与饱和之间,有一过渡区,这一段过渡区就是放大区(线性区),利用这一区域,可将非门作放大器之用。

使用方法:将兆欧级电阻接至非门的输入与输出之间作为直流偏置电阻,这时,非门工作于放大区.就可作放大器用了。

一般情况下,一级放大倍数可达20多倍。

对脉搏信号进行采集的时候,空气中交流工频干扰最大,根据有源滤波的原理,在接至非门的输入与输出之间作为直流偏置电阻上并联一个电容。

依据公式1/2πRC<50HZ算出各参数。

3. 整形电路
由两个非门组成的施密特触发器,输入电压经电阻R4和R5分压后来控制非门的工作状态,要求R5>R4。

当输入电压上升到略大于正向阈值电压或下降到略小于负向阈值电压时,施密特触发器的状态才会迅速翻转,从而输出边沿陡峭的矩形脉冲。

4.定时电路
本试验采用555单稳态定时电路,定时时间为60s。

工作原理大概如下:
将555定时器的2脚作为触发信号的输入端,同时将放电段DIS和阈值输入端TH相恋后和定是原件R、C相连,通过R接电源,通过C接地,便组成了单稳态触发器。

时间常数有t=1.1RC可以求得。

本次试验C7=47uF,R=1.16M,精确定时可调R8得到。

表1 CD4O110逻辑功能表
5.计数译码显示
本设计中采用CD40110作为计数器,因为它有译码功能,可与数码管直接连接。

因为脉搏测试器中需要上十位的数字。

因此,将两片CD40110直接按并行进位方式连接的百进制计数器。

R12、R15的TE(4脚)为低电平时,允许计数脉冲输人,当TE为高电平时,计数器被禁止,不能计数。

555集成定时器与C7、R7、R8、R9构成的定时电路,其输出端(3脚)接非门后与R12、R15的TE(4脚)相连接。

平时,555的输出为低电平,经非门后为高电平,使R12、R15计数禁止;当按下S1时,555的输出变为高电平(经非门后为低电平),C10经R7、R8、R9充电,定时开始。

与此同时,R12、R15允许计数脉冲进入,60秒后,555的输出又变为低电平,使计数器停止计数,此时,数码管显示的计数结果即为一分钟内脉搏跳动的次数。

C10、R10组成清零电路,用来保证在电源接通瞬间,R12、R15自动复位清零。

七段数码管与CD40110的连接方式如下:
6、电源电路
电源退耦电路,采用了大容量电解电容旁边并联一只小电容的电路结构,这样大容量电解电容肩负着低频交变信号的退耦,滤波,平滑之作用;而小容量电容则以自身固有之优势,消除电路网络中的中,高频寄生耦合。

在这些电路中的这一大一小的电容均称之为退耦电容。

所谓退耦,既防止前后电路网络电流大小变化时,在供电电路中所形成的电流冲动对网络的正常工作产生影响。

换言之,退耦电路能够有效的消除电路网络之间的寄生耦合。

四、总原理及元器件清单电路工作
1、总电路图:
2、工作原理:
打上电源开关,电路各部分开始工作。

首先是压电陶瓷片采集人体的的脉搏信号,经放大和整形后,脉冲数进入计数器,经译码后显示,计数开始。

来一个脉冲计数器就加一。

按键按下,定时开始,60s后,定时器输出端电平翻转,计数器停止工作。

数码管显示出脉搏跳动的次数。

3、元器件清单
五、调试与分析
第一次调试:接通电源,数码管亮的段码有错。

原因:原理图中数码管管脚与CD40110
管教连接不匹配。

解决办法:重新画了一小块数码管段码转换电路。

电路图如下:
再将模拟脉搏信号从函数发生器发出,Vpp设置为5mv,计数器不工作,依次上调,直到V pp=5v,计数器开始工作。

原因:放大电路没有工作。

解决办法:不接信号源,测试CD40 69各管脚工作电压均为2.5,正常。

接通信号源,CD4069的1脚输入信号,2脚无信号输出。

在实验板上连接放大电路,改变非门的直流反馈电阻大小,3M、7M、10M均无反应。

上网查找相关资料,解释说非门的放大作用效果不容易出现,对信号、电阻要求的条件也较高。

最后,重新搭建运放放大电路。

第二次调试:接通电源,加上信号,Vpp设置为5mv,电路工作,开始计时。

调节滑动变阻器,以使电路精确定时。

最后发现,滑动变阻器调节为零,定时时间仍然超过60s。

原因:可能由于电路结构的影响,定时电阻并不符合公式t=1.1RC,稍显过大。

解决办法:将用做定时电阻的100K短接。

重新调节滑动变阻器,可达到60s精确定时。

六、实验结果
通过上述调试,电路能正常工作,但是接上压电陶瓷片采集人体的脉搏信号,结果仍不理想。

六、实验结果
左图为方案一整体电路PCB(包括电源退耦电路),右上图为数码管转换PCB,右下图为放大部分的PCB(包括电源退耦电路)。

七、结论与心得:
本次实验由我和队员共同完成,在这个过程中使我受益匪浅。

在确定各模块电路的过程中,不但训练了我们查找资料的能力,更是一次很好考验我们用所学的模拟电子技术基础和数字电子技术基础等相关知识来判断电路正确与否的机会。

通过此次课程设计的锻炼,自己的动手能力有了很大的提高,查找问题、解决问题的能力也有了相应的进步。

当然,这次试验也让我看到了我们的很多缺陷。

首先就是在画原理图的时候没有看清数码管的管脚,以致出现乱码的情况。

还有就是在确定方案之前,没有在实验板上认真搭建电路,事前摸清放大模块的工作情况。

由于这两次较大的失误使整个设计与制作过程耗时耗力耗材超过预算。

总的来说,本次设计有苦也有甜。

设计思路是最重要的,只要你的设计思路是成功的,那你的设计已经成功了一半,因此我们应该在设计前做好充分的准备。

同时熟练地掌握课本上的知识,这对试验中出现的问题进行分析解决也是相当重要的。

这次设计留给我们印象最深的是要设计一个成功的电路,必须要有耐心,更要有坚持的毅力。

相关主题