汽油机辅助控制系统
2.压力波的利用方法
一般而言,进气管长度长时,压力波长,可使发动机中低转速区功率增大;进气管长度短时,压力波波长短,可使发动机高速区功率增大。
3.波长可变的谐波进气增压控制系统
丰田皇冠车型2JZ—GE发动机采用在进气管增设一个大容量的空气室和电控真空阀,以实现压力波传播路线长度的改变,从而兼顾低速和高速的进气增压效果。
3.怠速控制的方法
怠速控制也就是对怠速工况下的进气量进行控制。控制基本类型有节气门直动式和旁通空气式。
二、节气门直动式怠速控制器
结构主要由直流电动机、减速齿轮机构、丝杠机构和传动轴等组成。
原理:当直流电动机通电转动时,经减速齿轮机构减速增扭后,再由丝杠机构将其旋转运动转换为传动轴的直线运动。传动轴顶靠在节气门最小开度限制器上,发动机怠速运转时,ECU根据各传感器的信号,控制直流电动机的正反转和转动量,以改变节气门最小开度限制器的位置,从而控制节气门的最小开度,实现器2—过气道3—空气滤清器4—过气室5—涡流控制气门
教
案
内
容
6—进气控制阀7—节气门8—真空驱动器
维修时检查空气真空电磁阀的电阻为~Ω。
三、可变配气相位控制系统(VTEC)
1.对配气相位的要求
要求配气相位随着发动机转速的变化,适当的改变进、排气门的提前或推迟开启角和迟后关闭角。
维修时主要检查真空罐、真空气室、和真空管路有无漏气,真空电磁阀电路有无短路或断路。
二、谐波增压控制系统(ACIS)
谐波增压控制系统是利用进气流惯性产生的压力波提高进气效率。
1.压力波的产生
当气体高速流向进气门时,如进气门突然关闭,进气门附近气流流动突然停止,但由于惯性,进气管仍在进气,于是将进气门附近气体被压缩,压力上升。当气体的惯性过后,被压缩的气体开始膨胀,向进气气流相反方向流动,压力下降。膨胀气体的波传到进气管口时又被反射回来,形成压力波。
在使用中,本田车系若有故障21,说明VTEC电磁阀或电路有故障,按以下进行检查:
(1)清除故障码,在重新调取故障码。
(2)关闭点火开关,拆开VTEC电磁阀线束,测电磁阀线圈电阻应为14~30Ω。
(3)检查VTEC电磁阀与电脑之间的接线。
(4)起动发动机,当工作温度正常时,检查发动机转速分别为1000r/min、2000r/min和4000r/min时的机油压力。
(3)暖机控制
在暖机过程中,ECU根据冷却液温度信号按内存的控制特性控制怠速控制阀的开度,随温度上升,怠速控制阀开度渐渐减小。当冷却液温度达到70℃时,暖机控制过程结束。
(4)怠速稳定控制
当转速信号与确定的目标转速进行比较有一定差值时(一般为20r/min),ECU将通过步进电动机控制怠速控制阀,调节怠速空气供给量,使发动机的实际转速与目标转速相同。
2.VTEC机构的组成
同一缸有主进气门和次进气门,主摇臂驱动主进气门,次摇臂驱动次进气门,中间摇臂在主次之间,不与任何气门直接接触。
VTEC配气机构与普通配气机构相比较,主要区别是:凸轮轴上的凸轮较多,且升程不等,结构复杂。
3.VTEC机构的工作原理
功能:根据发动机转速、负荷等变化来控制VTEC机构工作,改变驱动同一气缸两进气门工作的凸轮,以调整进气门的配气相位及升程,并实现单进气门工作和双进气门工作的切换。
故障自诊断系统、失效保护系统、应急备用系统
学时
1
2
1
2
2
2
备注
教案(章节备课)
第1节
怠速控制系统
教
案
内
容
一、怠速控制系统的功能与组成
1.怠速控制系统的功能:
用高怠速实现发动机起动后的快速暖机过程。
自动维持发动机怠速在目标转速下稳定运转。
2.怠速控制系统的组成
主要由传感器、ECU、和执行元件三部分组成。
当发动机转速下降到设定值,电脑切断电磁阀电流,正时活塞一侧油压下降,各摇臂油缸孔内的活塞在回位弹簧作用下,三个摇臂彼此分离而独立工作。
4.VTEC系统电路
VTEC控制系统
教
案
内
容
5.VTEC系统的检测
发动机不工作时,拆下气门室罩,转动曲轴分别使各缸处于压缩上止点位置,用手按压中间摇臂,应能与主摇臂和次摇臂分离单独运动。
(7)学习控制
由于磨损原因导致怠速控制阀性能发生变化,怠速控制阀的位置相同时,实际的怠速转速与设定的目标转速略有不同,ECU利用反馈控制使怠速转速回归到目标转速的同时,还可将步进电动机转过的步数存储在ROM中,以便在此后的怠速控制过程中使用。
四、旋转电磁阀型怠速控制阀
教
案
内
容
1.控制阀的结构与工作原理
步进电动机型怠速控制阀工作情况检查
a)接蓄电池正极b)接蓄电池负极
3.控制阀控制的内容
(1)起动初始位置的设定
关闭点火开关使发动机熄火后,ECU的M—REL端子向主继电器线圈供电延续约2~3s。在这段时间内,蓄电池继续给ECU和步进电动机供电,ECU使怠速控制阀回到起动初始位置。
(2)起动控制
在起动期间,ECU根据冷却液温度的高低控制步进电动机,调节控制阀的开度,使之到起动后暖机控制的最佳位置,此位置随冷却液温度的升高而减小。
重点:怠速控制系统、进气控制系统、排放控制系统以巡航控制系统的功能、控制原理及主要元件的构造与检修。
难点:怠速控制系统的控制原理。
教学进程
第次课
第1次课
第2次课
第3次课
第4次课
第5次课
第6次课
授课章节
怠速控制系统
进气控制系统、增压控制系统
电子起动系统
排放控制系统
巡航控制及电控节气门系统、冷却风扇及发电机控制系统
2.控制阀的检修
(1)在检修时应注意
1)不要用手推拉控制阀,以免损坏丝杠机构的螺纹。
2)不要将控制阀浸泡在任何清洗液中,以免步进电动机损坏。
3)安装时,检查密封圈好坏,并在密封圈上涂少量润滑油。
(2)检修步进电动机型怠速控制阀的方法
1)拆下控制阀线束连接器,点火开关置“ON”,不起动发动机,分别检测B1和B2与搭铁间的电压,为蓄电池电压。
(2)发动机达到正常工作温度、变速器处于空挡位置时,使发动机维持怠速运转,用专用短接线接故障诊断座上的TE1与E1端子,发动机转速应保持在1000~1200r/min,5s后转速下降约200r/min。
(3)拆下怠速控制阀上的三端子线束连接器,在控制阀侧分别测量中间端子(+B)与两侧端子(ISC1和ISC2)的电阻应为~Ω。
工作原理:ECU控制旋转电磁阀型怠速控制阀工作时,控制阀的开度是通过控制两个线圈的平均通电时间(占空比)来实现的。
2.控制阀的控制内容
包括起动控制、暖机控制、怠速稳定控制、怠速预测控制和学习控制。
3.控制阀的检修
(1)拆下控制阀线束连接器,点火开关置“ON”,不起动发动机,分别检测电源端子与搭铁间的电压,为蓄电池电压。
(5)怠速预测控制
在发动机负荷发生变化时,为了避免怠速转速波动或熄火,ECU会根据各负荷设备开关信号,通过步进电动机提前调节怠速控制阀的开度。
(6)电器负荷增多时的怠速控制
如电器负荷增大到一定程度时,蓄电池电压会降低,为了保证电控系统正常的供电电压,ECU根据蓄电池电压调节怠速控制阀的开度,提高发动机怠速转速,以提高发动机的输出功率。
三、步进电动机型怠速控制阀
1.控制阀的结构与工作原理
步进电机主要由转子和定子组成,丝杠机构将步进电机的旋转运动转变为直线运动,使阀心作轴向移动,改变阀心与阀座之间的间隙。安装在节气门上。
工作原理,当ECU控制使步进电机的线圈按1-2-3-4顺序依次搭铁时,定子磁场顺时针转动,由于与转子磁场间的相互作用,使转子随定子磁场同步转动。同理,步进电动机的线圈按相反的顺序通电时,转子则随定子磁场同步反转。定子有32个爪级,步进电动机每转一步为1/32圈,工作范围为0~125个步进级。
工作原理:发动机低速运转时,电磁阀不通电使油道关闭,此时,三个摇臂彼此分离,主凸轮通过摇臂驱动主进气门,中间凸轮驱动中间摇臂空摆;次凸轮的升程非常小,通过次摇臂驱动次进气门微量关闭。配气机构处于单进、双排气门工作状态,单进气门由主凸轮轴驱动。
当发动机高速运转,电脑向VTEC电磁阀供电,使电磁阀开启,来自润滑油道的机油压力作用在正时活塞一侧,此时两个活塞分别将主摇臂和次摇臂与中间摇臂接成一体,成为一个组合摇臂。此时,中间凸轮升程最大,组合摇臂受中间凸轮驱动,两个进气门同步工作。
2)发动发动机后再熄火时,2~3s内在怠速控制阀附近应能听到内部发出的“嗡嗡”响声。
3)拆下控制阀线束连接器,测量B1与S1和S3、B2与S2和S4之间的
教
案
内
容
电阻,应为10~30Ω。
4)拆下怠速电磁阀,将蓄电池正极接至B1和B2端子,负极按顺序依次接通S1—S2—S3—S4端子时,随步进电动机的旋转,控制阀应向外伸出,如图;若负极按反方向接通S4—S3—S2—S1端子,则控制阀应向内缩回。
2.控制阀的控制内容
只进行通、断电的控制。由于旁通气量少,为此需要快怠速控制辅助控制发动机暖机过程的空气量。
3.控制阀的检测
同占空比控制电磁阀相同。
第2节
进气控制系统
教
案
内
容
一、动力阀控制系统
功用:根据发动机不同的负荷,改变进气流量去改善发动机的动力性能。
工作原理:受真空控制的动力阀在进气管上,控制进气管空气通道的大小。发动机小负荷运转时,受ECU控制的真空电磁阀关闭,真空室的真空度不能进入动力阀上部的真空室,动力阀关闭,进气通道变小,发动机输出小功率。当发动机负荷增大时,ECU根据转速、温度、空气流量信号将真空电磁阀电路接通,真空电磁阀打开,真空室的真空度进入动力阀,将动力阀打开,进气通道变大,发动机输出大的扭矩和功率。