当前位置:文档之家› 材料近代分析测试方法

材料近代分析测试方法

1..当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生光电子和俄歇电子。

2.结构因子表征了晶胞内原子的种类,原子的个数、原子的位置对衍射强度的影响。

3.X射线在晶体中产生衍射的充分必要条件是:满足布拉格方程和结构因子FHKL ≠0.4.德拜法衍射花样的测量主要是测量衍射线条的相对位置和相对强度,然后在计算出 角和晶面间距。

5.银的X射线光电子能谱的存在Ag 4s峰、Ag 3p峰、Ag 3s峰、Ag 3d峰四个特征峰,其中强度最大的峰是Ag 3d峰6.原子力显微镜中利用斥力与吸引力的方式发展出三种接触模式、非接触模式和轻敲模式操作模式。

7.XPS光电子能谱图中通常会出现X射线卫星峰、能量损失峰、自旋轨道分裂峰、俄歇电子峰和振离和振激峰等5种伴峰。

8.俄歇电子能谱谱线KL1L2,K表示空穴所在壳层L1表示填充空穴电子所在壳层L2_表示俄歇电子所在壳层9.X射线衍射仪由X射线发生器、X射线测角仪、辐射探测器和辐射探测电路4个基本部分组成,现代X射线衍射仪还配有控制操作和运行软件的计算机系统。

10.球差即球面像差,是由于电磁透镜的近轴区域磁场与远轴区域磁场对电子的折射能力不符合预定的规律造成的;像散是由透镜磁场的非旋转对称引起的;色差是由于入射电子的波长或能量不同或变化所造成的。

11.透射电镜主要由电子光学系统、供电控制系统、真空系统三部分组成。

12.利用电磁线圈激磁的电磁透镜,通过调节激磁电流可以很方便地调节磁场强度,从而调节焦距。

13.原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是检测原子之间的相互作用力等来呈现样品的表面特性。

14.核磁共振的化学位移是由于核外电子的屏蔽效应而造成的,化学位移值是以标准物质(TMS)为相对标准得到的。

15.在甲基自由基中,三个质子与未成对电子等同的相互作用,其ESR谱由4重峰组成,相对强度比1:3:3:1.16.影响红外吸收峰谱带位移的内部因素有空间效应、振动耦合、费米共振、氢键效应四种.17.在程序控温条件下,示差扫描量热分析(DSC)是测定补偿功率与环境温度的关系,而差热分析(DTA)是测定物质和参比物的温度差与环境温度的关系,因而DSC能用于定量热分析上。

18.最基本的X射线衍射实验方法有三种:劳厄发、转晶法、粉末法。

19.粉末法测衍射线强度时,影响X射线衍射强度的因子有结构因子、角因子、多重性因子、温度因子、吸收因子。

20.宏观应力是多个晶粒范围内存在的保持平衡的应力,它能引起衍射线位移;微观应力是少数晶粒或若干原子范围内存在保持平衡的应力,它能引起衍射线位移或者强度变化。

21. 电子与物质相互作用,可产生二次电子,背散射电子,俄歇电子,特征X 射线等用于观测样品形貌或成分的主要信号。

22.通过调整中间镜的透镜电流,使中间镜的物平面与物镜的背焦面重合,可在荧光屏上得到衍射花样; 若使中间镜的物平面与物镜的像平面重合则得到显微像。

23.透射电镜的分辨率主要与物镜的分辨率有关,扫描电镜的分辨率主要与电子束的直径有关.24.使用 NMR仪时,TMS的共振峰与化合物的某质子共振峰之间的频率差为120HZ。

如果使用的NMR仪,它们之间的频率差将200HZ25.分子产生红外振动吸收时其偶极矩必须有变化;而分子振动产生Raman光谱是必须有极化率变化.26.NMR谱图反映的信息有化学位移、偶合常数、吸收峰面积。

27.造成IR光谱实际观察到的峰数目减少的原因有存在没有偶极矩变化的振动模式、存在能量简并态的振动模式、仪器的分辨率分辨不出的振动模式。

31.影响红外光谱吸收强度的两个主要因素是振动能级的跃迁几率、振动能级跃迁时,偶极矩的变化。

拉曼散射线包括stokes线和anti-stokes线,其中stokes 线的强度比较大。

随管电流.X射线谱的谱λ应满足处33.在选择滤波片时,所选择的滤波片的吸收限入k于入射X射线λ Kα 与λ Kβ 之间,在选择阳极靶材时,其目的是使靶材产生特征X射线,不激发样品的荧光辐射,降低背光,图像清晰,所选择靶的Ka波长34.既可以进行成像操作又可以进行衍射操作。

35.金属薄膜样品的制备过程主要包括:线切割,机械研磨预减薄,电解抛光减薄、双喷电解减薄。

36.扫描电镜是由真空系统,电子束系统,成像系统部分组成。

37.X射线衍射的本质是由大量的原子参与的一种散射现象,产生衍射现象的必要条件是有一个可以干涉的波(X射线)和一组周期排列的散射中心(晶体中的原子)。

38.在X射线衍射分析中,滤片玻璃选择的目的是使入射X射线单色化,所选择的滤波片的吸收限λKβ<λ<λK∂。

阳极靶材的选择目的是避免产生荧光辐射干扰分析,所选择的靶材的Kα波长应满足λKα稍大于λK且尽量靠近λK。

39.二次电子的主要特点是对样品的表面形貌敏感,空间分辨率高,信号收集率高,背散射电子的主要特点是对于样品物质的原子序数敏感,分辨率及信号收集率低。

40.在电子偏转时,上偏转线圈使电子束顺时针偏转θ角,下偏转线圈使电子束逆时钟偏转θ+β角,则电子束相对于原来的方向倾斜了逆时钟β角,而入射点的位置不变。

41.常用的IR光谱分析波数范围是4000-200,产生IR光谱的必要条件是辐射能满足物质振动跃迁所需的能量,辐射与物质间有相互偶合作用,产生偶极矩变化,分子振动的两种主要形式是伸缩振动,变形振动。

42.核磁共振波谱(NMR)的分析对象是具有磁矩的原子核,电磁顺磁共振波谱(SER)的分析对象是具有未成对电子的物质。

43.X射线照射到物质上与物质相互作用,从能量转换的角度可归结为三个能量转换过程:光-动(散射能量),动-内(吸收能量),光-电(透过物质传播的能量)。

44.化合物A的分子式为,在它的NMR图谱中,在δ=处有一个二重峰(3H);δ=处有一个四重峰(1H);δ=处有一个多重峰(5H),其不饱和度为4 ,结构式为47.co分子中有4种振动方式,在IR中却只有2条谱带,其原因是存在没有偶极距变2化的振动模式。

48.原子发射光谱的光源主要有直流电弧、交流电弧、高频电感耦合等离子体,其作用是为试样的气化原子化和激发提供能源。

49.电子自旋振动的研究对象是顺磁性物质,产生的条件是恒定磁场中电子吸收满足其能级跃迁的微薄能量。

50.热分析法是热分析在规定的气氛中测量样品的性质随时间或温度的变化,并内标法:内标法是一种间接或相对的校准方法。

在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。

外标法:外标法不是把标准物质加入到被测样品中,而是在与被测样品相同的色谱条件下单独测定,把得到的色谱峰面积与被测组分的色谱峰面积进行比较求得被测组分的含量。

外标物与被测组分同为一种物质但要求它有一定的纯度,分析时外标物的浓度应与被测物浓度相接近,以利于定量分析的准确性。

二次电子:当入射电子与原子核外电子发生交互作用时,会使原子失掉电子而变成离子,这个脱离原子的电子称为二次电子俄歇电子:在原子壳层中产生电子空穴后,处于高能级的电子可以跃迁到这一层,同时释放能量(释放的能量刚好是这两个能级之差).当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子发射,被称为俄歇电子化学等价:具有相同位移值得核称为化学位移核,具有相同的化学环境。

磁等价:具有相同位移值,并且对组外的其它核的偶合常数也相同。

磁等价的核不产生裂分。

系统消光:因原子在晶体中位置不同或原子种类不同而引起的某些方向上的衍射线消失的现象。

结构消光:在点阵消光的基础上,因结构基元内原子位置不同而进一步产生的附加消光现象,称为结构消光。

结构因子:定量表征原子排布以及原子种类对衍射强度影响规律的参数,即晶体结构对衍射强度的影响因子。

衍射花样指数化:确定衍射花样中各线条(弧对)相应晶面(即产生该衍射线条的晶面)的干涉指数,并以之标识衍射线条,又称衍射花样指数化(或指标化)。

质厚衬度效应:由于样品不同微区间存在质量或厚度的差异而引起的相应区域透射电子强度的改变,从而在图像上形成亮暗不同的区域,这样现象称为质厚衬度效应。

衍射效应:入射电子束通常是波长恒定的单色平面波,照射到晶体样品上时会与晶体物质发生弹性相干散射,使之在一些特定的方向由于位向相同而加强,但在其他方向却减弱,这种现象称为衍射。

衍射衬度:样品相邻区域位向或结构不同导致衍射束强度的差异而造成图亮度的差别。

原子序数衬度:利用样品微区原子序数或化学成分变化敏感的物理信号作为调剂信号得到的、表示微区化学成分差别的像衬度。

表面形貌衬度:试样表面微区形貌差别实际上就是各微区表面相对于入射束的倾角不同,因此电子束在试样上扫描时任何二点的形貌差别,表现为信号强度的差别,从而在图像中形成显示形貌的衬度。

瑞利散射(弹性散射):入射线光子与分子发生弹性碰撞作用,仅光子运动方向改变而没有能量变化的散射。

散射光与入射光频率相同。

拉曼散射(非弹性散射):入射线(单色光)光子与分子发生非弹性碰撞作用,在光子运动方向改变的同时有能量增加或损失的散射。

散射光与入射光频率不同。

斯托克斯线:光子将部分能量给样品分子,散射光的能量减少,在低频处测得的散射光线。

反斯托克斯线:光子从样品中获得能量,散射光的能量增大,在高频处测得的散射光线。

明场像:电子束穿越薄晶,满足布拉格条件发生散射,利用衬度光栏仅让透射束通过成像。

暗场像:电子束穿越薄晶,满足布拉格条件发生衍射,利用衬度光栏仅让衍射束通过成像。

吸收限:X射线照射固体物质产生光子效应时能量阀值对应的波长称为物质的吸收限。

红外活性与非红外活性:只有发生偶极矩变化的分子振动,才能引起可观测到的红外吸收光谱带,称这种分子振动为红外活性的,反之则称为非红外活性的。

拉曼活性:发生极化率变化的分子振动,具有生物活性。

自旋-晶格弛豫:晶格泛指环境,即高能态自旋核把能量传给周围环境(同类分子、溶剂小分子、固体晶格等)转变为热运动而本身回到低能态维持Boltzmann分布。

自旋-自旋驰豫:高能态核把能量传给同类低能态的自旋核,本身回到低能态,维持统计分布。

高、低能态自旋核总数不变。

饱和现象:NMR信号是依靠稍多的低能级原子核产生的。

低能级的核在强磁场作用下吸收能量可跃迁到高能级,使低能级的核数目的减少,最终使高、低能级的核数目相同,体系无能量变化,吸收信号消失,导致饱和现象的发生。

弛豫过程就是高能态的核以非辐射的形式放出能量回到低能态重建Boltzmann分布的过程。

xps光电子:x射线与样品相互作用时,x射线被样品吸收使原子内层电子脱离成为自由电子。

振动偶合:当两个振动频率相同或相近的基团相邻并由同一原子相连时,两个振动相互作用(微扰)产生共振,谱带一分为二(高频和低频)。

相关主题