当前位置:文档之家› 离心泵典型结构工作原理

离心泵典型结构工作原理

菜单
由于泵的理论扬程与液流性质无关,所以一台离 心泵,在同一个转速,同一个流量下工作时,不 论输送什么液体,叶轮所给出的,用被输送的液 柱高度表示的理论扬程是相同的。但由于各种液 体重度不同,因此泵出口处的压力是不一样的。
菜单
6 有限叶片数对理论扬程的影响
菜单
在叶片数有限时,由于惯性作用产生附加相对速
机械密封:由垂直于主轴的两个光制的、精密的平面在弹
性元件及密封液体压力的作用下相互紧帖并作相对运动而构成 的动密封装置。效果好;使用寿命长;造价高。
1、弹簧座;2、弹簧;3、动环;4、静环;5、动环密封圈;
6、压盖;7、静环密封圈;8、防转销;9、紧定螺钉
菜单
副叶轮密封 非接触式离心密封
输送高(低)温、易燃、易爆、强腐蚀且含颗粒 的液体
过程流体机械
泵(离心泵典型 结构与工作原理)
作业 (10月26日交)
P188: 练习题1,2,3题
内容回顾
1.问答题 1)什么是汽蚀?如何获得泵的临界汽蚀余量和允许汽蚀余量? 2)提高离心泵抗汽蚀性能有哪些措施?
2.判断题
1)有效汽蚀余量数值的大小与泵本身的结构尺寸有关,而与泵 吸入装置的条件等无关,故又称其为泵吸入装置的有效汽蚀 余量。( )
菜单
规定扬程 用户与设计单位在合同单上规定流量时所要求
的扬程。 设计扬程
设计单位在设计泵时采用的扬程。 吸入扬程或吸入压头
吸液池液面到泵基准面之间的扬程。 排出扬程或排出压头
泵基准面到排液面之间的扬程。
菜单
3) 与功率有关的其他功率参数
水力功率 单位时间内,叶轮给予液体的能量
Ph gQ THT
理论功率W
擦损失大小的指标
m Ph/Pa m94%~98%
因为泵效率 P u
Pa
所以 P u P hm Q Q TgT g H H mvhm 即泵效率是容积效
率、水力效率与机械效率的乘积,也就是说泵效率低于任 何一个效率值。近代水泵的效率一般为70%~90%。
菜单
菜单
5.2 离心泵基本方程 叶轮几何形状及表示方法 液流在叶轮中流动的速度三角形 欧拉方程
使液体按规定方向流动,或使它的部分速度转化 为压力能的具有叶片的零件。由正向导叶和反向 导叶组成。
菜单
密封
内部泄漏 内密封
外部泄漏 外密封
菜单
内密封形式
Labyrinth
菜单
外密封形式
填料密封
结构简单、易于制造;
用于普通水泵和一般化工泵;
效果较差;
泄漏量大,需经常更换填料。
1、填料箱体;2、填料;3、液封圈;4、填料压盖;5、底衬套 菜单
周流动的液体中,产生涡流。
流量
水力功率 机械损失功率 原动机输入功率 原动机配用功率
容积效率 水力效率 机械效率 机组效率
菜单
1) 与泵流量Q有关的其他流量参数 理论流量
单位时间内流入泵工作元件的液体量,用符号 表示,单位为m3/s
QT Qq
规定流量 这是用户使用泵所要求的泵体积流量,也就是
用户与设计部门合同上所规定的流量。
菜单
菜单
离心泵的命名
泵的国际标准(轴向吸入离心泵的标准)
ISO-2858-型号,额定性能点和尺寸 ISO3069-装机械密封和软填料的空腔尺寸 ISO-3661-底座尺寸和安装尺寸
我国已制定了与ISO等效的国家标准,全名为《悬 臂式离心泵型式和基本参数》,并且按ISO 设计 了IH型化工泵IB型化工泵,它的型号由三部分组 成,依次分别代表泵的吸入口直径、排出口直径 和叶轮名义直径。如:IH 80-50-250。
菜单
轴向力平衡
单级 多级
开平衡孔 卸荷盘
平衡叶片 平衡盘
双吸叶轮 叶轮对称排列
菜单
开平衡孔
平衡叶片
菜单
双吸叶轮
卸荷盘
菜单
平衡盘
叶轮对称排列
菜单
4 离心泵的命名方式
国产离心泵的系列化、通用化和标准化 按汉语拼音方案编制的,将离心泵按用途及输
送液体性质分成水泵及专用泵。水泵输送水及粘 度、化学性质和水相近的液体,专用泵指输送悬 浮液及腐蚀性等液体用泵。 编制方法一律采用大写汉语拼音及阿拉伯数字
动量矩定理
由动量矩定理和能量守恒的推导,可得泵的理
论扬程:
HT
u2cu2 u1cu1 g
,m
上式即为离心式机械的基本方程式-欧拉方程
式。
菜单
欧拉方程式的第二表达式 利用进出口速度三角形,可推导出:
HTu2 22 gu12
12 2 2c2 2c12 2g 2g
叶轮中离心力对单 位质量液流作的功
叶轮给出的理论扬 程中有一部分是液 流流过叶轮时相对 速度的降低而获得
容积效率 泵的流量与理论流量之比为容积效率,说明泵漏损的
程度,即泵密封情况的好坏
v Q/QT
对于离心泵,一般为96%~99%。 水力效率
泵的扬程H与理论扬程HT之比,是衡量泵对流过它的液 流阻力大小的指标
h H/HT
对于离心泵一般为80%~92%。
菜单
机械效率 水力功率与轴功率之比,是衡量泵的运动部件机械摩
铸铁、青铜、钢
叶轮在轴上的安装方式 悬臂式离心泵是否可以反转?
A:悬臂式叶
B :搁置式叶
C :双面进水
轮固定发法
轮固定法
式叶轮固定法
菜单
蜗壳与导叶:离心泵转能装置 蜗壳(螺旋形泵体)是单级泵转能装置,其形
状应使流体流过的损失小,并且断面逐渐扩大
菜单
导叶 多级泵采用导叶,末级之后采用蜗壳。导叶是
原动机输入功率应大于泵轴功率。 原动机配用功率P
选用的原动机功率,W。 泵的轴功率是选配原动机功率的依据。原动机一般为 电动机,因为考虑到电动机有超负荷的可能性,通常可按 使用中最大流量下计算出来的轴功率,再考虑一个安全系 数K作为所需电动机的功率,即原动机配用功率为:
P K•Pa
菜单
4) 与效率有关的其它效率参数
2)提高离心泵抗汽蚀性能主要有两种措施,一种是改进泵本身 的结构参数或结构型式,使泵具有尽可能小的必需汽蚀余量 NPSHr;另一种是合理设计泵前装置及安装位置,使泵入口处 具有足够大的有效汽蚀余量NPSHa,以防止发生汽蚀。( )
第二节 离心泵典型结构与工作原理 离心泵的工作原理 离心泵的分类 离心泵典型结构和主要零部件 离心泵命名方式 离心泵的性能参数及基本方程 有限叶片数对理论扬程的影响 离心泵的各种损失
菜单
5 离心泵性能参数和基本方程式
离心泵性能参数 离心泵基本方程
菜单
5.1 离心泵性能参数
离心泵的性能参数
与泵流量有关的其他流量参数 与扬程H有关的其他扬程参数 与功率有关的其他功率参数 与效率有关的其他效率参数
理论流量 规定流量 设计流量
理论扬程 规定扬程 设计扬程 吸入扬程或吸入压头 排出扬程或排出压头
度后,使Cu2<Cu2∞及Cu1>Cu1∞
HT
u2cu2 u1cu1 g
,m
因此同一几何尺寸的泵,在同一流量及转速下
工作时,其进出口速度三角形的底边U及高Cr虽然 相同,但叶片数有限的实际叶轮给出的理论扬程
小于叶片数无限的理想叶轮给出的扬程,
即:HT<HT∞。
菜单
7 离心泵的各种损失
机械损失
轴承的摩擦损失 轴封处的摩擦损失 前后盖板外侧和液体之间的摩擦损失
菜单
1) 叶轮几何形状及表示方法
叶轮由前、后盖板和叶片组成,一般,盖板表面 是回转曲面。
叶片形式有:直叶片、单曲率叶片、双曲率叶片
轴面投影
平面投影
菜单
2) 液流在流动时的速度三角形(理想叶轮、理想液体) 泵叶轮中任意一点i的液流的三个速度为
ci ui i
3) 欧拉方程式-离心式机械基本方程式
菜单
单级双吸泵
菜单
多级泵
菜单
立式泵
菜单
3.2 主要零部件
压出室
吸 入 室
叶 轮

密封装置
轴向力平衡装置
菜单
叶轮:作功部件
结构型式: 闭式 半开式 开式
输送不含杂质的液体,效率高;造价高 输送易于沉淀或含有固体颗粒的液体 输送沙浆、污水、含纤维液体;效率低
叶片数可少到2-4片
菜单
材料:
菜单
1 离心泵的工作原理
底阀的作用?
自吸 (self priming)
菜单
需要强调指出的是:
• 若在离心泵启动前没有向泵壳内灌满被输送的液体,由 于空气密度低,叶轮旋转后产生的离心力小,叶轮中心区 不足以形成吸入贮槽内液体的低压,因而虽启动离心泵也 不能输送液体。这表明离心泵无自吸能力,此现象称为气 缚。(容积泵每次运行前是否需要灌泵?) • 吸入管路安装单向底阀是为了防止启动前灌入泵壳内的 液体从泵壳内流出。空气从吸入管道进到泵壳中都会造成 气缚。
菜单
液体前后盖板与液体发生摩擦所引起的损失,叫 圆盘(轮阻)损失
ΔPdf=Kρn3D25 KW
圆盘摩擦系数
流体密度 Kg/m3
转速
叶轮出口直径
菜单
7.2 容积损失 由于转动部件与静止部件存
在间隙,当叶轮转动时,两 侧间隙产生压差而使液体从 高压侧向低压侧泄漏称为容 积损失 几乎在所有比转速的变化范 围内,容积损失等于圆盘摩 擦损失的一半。
设计流量 设计单位为了适应生产与用户的要求,往往根
据需要和可能确定设计泵所采用的流量,在设计 和生产泵系列产品时尽可能满足社会需要。离心 泵的流量是可变的,在离心泵铭牌上或样本中给 出的流量是指额定流量,即离心泵在这一流量运 行时效率最高。离心泵尺寸就是根据这一特定的 设计流量设计的。
相关主题