当前位置:文档之家› 离心泵原理与操作

离心泵原理与操作


3. 离心泵结构
3.5 轴承箱
3.5.1 轴承箱作用 轴承的作用是对泵轴进行支撑,实质是能够承担径向载荷。 也可以理解为它是用来固定轴的,使轴只能实现转动,而控 制其轴向和径向的移动。 轴承箱则用来固定轴承,同时作为装载轴承润滑油的容器。
3. 离心泵结构
3.5.2 轴承润滑
离心泵大部分采用滚动轴承,而滚动轴承的元件(滚动 体、内外圈滚道及保持器)之间并非都是纯滚动的。由于在 外负荷作用下零件产生弹性变形,除个别点外,接触面上均 有相对滑动。滚动轴承各元件接触面积小,单位面积压力往 往很大,如果润滑不良,元件很容易胶合,或因摩擦升温过 高,引起滚动体回火,使轴承失效,所以轴承时刻都要处于 油膜的涂覆之中。 轴承润滑通常用油槽或油雾进行润滑,为了保证滚动体和 滚道接触面间形成一定厚度的油膜,采用中黏度的涡轮油 (国际标准化组织68级)较适宜。在油槽润滑中,轴承部分浸 在油中,油浸润高度以没过轴承底的50%为宜。如果超过50 %,过量的油涡流会使油温上升,油温升高会加速润滑荆的 氧化,从而降低润滑性能;如果低于50%,则油对轴承的冲 洗作用降低,润滑效果不好。
1.清理进口管路的异物使进口畅通,或者增加管径的大小; 2.降低输送介质的温度;
4.降低安装高度;
5.重新选泵,或者对泵的某些部件进行改进,比如选用耐汽 蚀材料等等. 6 .使泵体内灌满液体或者在进口增加一缓冲罐就可以解决.
2. 离心泵主要工作参数:
流量 Q



扬程 H 转速 n 功率 N 效率η 气蚀余量(Δhr)
p0
r=R z=0 p=p0
2 (R2 r 2 ) p p0 ( z) 2g
2 (R2 r 2 ) p p0 g ( z) 2g
中间形成 真空度
R
ω R 中心真空度
1. 离心泵工作原理
1.5 离心泵的气蚀
1.5.1 汽蚀发生的机理
1. 离心泵工作原理
1.5.3 离心泵产生汽蚀的原因
1、被输送的介质温度过高; 2、水池液位过低,有气体被吸入; 3、泵的安装高度过高; 4、流速和吸入管路上的阻力太大;
5、吸入管道、压兰(指不带液封的)密封不好,有空气进入。
6、流量过大,也就是说出口阀门开的太大
1. 离心泵工作原理
1.5.4 气蚀的解决方案
离心泵原理及应用
离心泵原理及应用
离心泵工作原理 离心泵主要参数 离心泵构造
1. 离心泵工作原理 离心泵典型结构
1—轴 2 — 机封 3 — 扩压管 4 — 叶轮 5 — 吸入室 6 — 口环 7 — 蜗壳
1. 离心泵工作原理
1.1 离心泵工作原理
驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用 下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排 出管。液体从叶轮获得能量,• 压力能和速度能均增加,并依 使 靠此能量将液体输送到工作地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低 压,• 吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐 在 中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室 进入叶轮中。

汽蚀使泵的性能下降
汽蚀使叶轮和流体之间的能量转换遭到严重的干扰,使泵的 性能下降,严重时会使液流中断无法工作。
1. 离心泵工作原理
1.5.2 汽蚀的后果

汽蚀使泵产生噪音和振动 气泡溃灭时,液体互相撞击并撞击壁面,会产生各种频率 的噪音。严重时可以听到泵内有“噼啪”的爆炸声,同时引 起机组的振动。而机组的振动又进一步足使更多的汽泡产生 和溃灭,如此互相激励,导致强烈的汽蚀共振,致使机组不 得不停机,否则会遭到破坏。
“等角速度旋转容器中液体相对平衡”
F ⑴ 单位质量离心力 在x轴和y轴方向分量: m 2
X r cos 2 x
Y 2 r sin 2 y
⑵ 铅垂方向质量力分量: Z g
⑶ 流体平衡微分方程: dp ( Xdx Ydy Zdz )
⑷ 流体静压力分布公式:
1. 离心泵工作原理 1.2 离心泵工作流程:
驱动机带动叶轮高速旋转 叶轮带动液体高速旋转 产生离心力 液体获得能量(压力能、 速度能增加) 输送液体 吸入液体,实现连续工作 液体甩出,叶轮中心形成低压 吸入罐与泵之间产生压差
1. 离心泵工作原理 1.3 离心泵工作动画演示
1.4 离心泵工作原理理论
2. 离心泵主要工作参数: 2.1 流量
即泵在单位时间内排出的液体量,通常用体积单位表示,符号 Q,单位有m3/h,m3/s,l/s等, ⑴ 体积流量Q : m3/h m3/s L/s ⑵ 质量流量m : kg/h kg/s t/h
m=ρQ
ρ液体密度kg/m3。
用的较多
2. 离心泵主要工作参数:
3. 离心泵结构
3.4 轴封
由于泵轴转动而泵壳固定不动,在轴和泵壳的接触处必 然有一定间隙。为避免泵内高压液体沿间隙漏出,或防止外 界空气从相反方向进入泵内,必须设置轴封装置。 轴封装置主要防止泵中的液体泄漏和空气进入泵中,以 达到密封和防止进气引起泵气蚀的目的。 轴封的形式:即带有骨架的橡胶密封、填料密封和机械密 封。目前最主要采用机械密封和干气密封两种形式。
3. 离心泵结构
3.5.3 滚动轴承的浸油润滑

N>3000rpm时,油位在轴承最 下部滚动体中心以下,但不低于 滚动体下缘。 N=1500~3000rpm时,油位在 轴承最下部滚动体中心以上,但 不得浸没滚动体上缘。
2.2 扬程
输送单位重量的液体从泵入口处(泵进口法兰)到泵出口处 (泵出口法兰),其能量的增值。 常用H表示,单位J/kg、m液柱。 (J=N· m)
2. 离心泵主要工作参数:
特别注意! H是液体获得的能量,不是简单的排送高度! ① 提高位高; 可由 以能 ② 克服阻力; H 看Βιβλιοθήκη ③ 增加液体静压能和速度能 出方 程
3. 离心泵结构
3.5.3 机械密封泄漏途径
机械密封中流体可能泄漏的途径有A、B、C、D四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密 封,二者均属静密封。B通道是旋转环与轴之间的密封,静 密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的 动密封,它是机械密封装置中的主密封,也是决定机械密封 性能和寿命的关键。
1. 离心泵工作原理
1.5.2 汽蚀的后果

汽蚀使过流部件被剥蚀破坏
通常离心泵受汽蚀破坏的部位,先在叶片入口附近,继而延 至叶轮出口。起初是金属表面出现麻点,继而表面呈现槽沟 状、蜂窝状、鱼鳞状的裂痕,严重时造成叶片或叶轮前后盖 板穿孔,甚至叶轮破裂,造成严重事故。因而汽蚀严重影响 到泵的安全运行和使用寿命。
s s
工程单位:1 kW=1000 W ⑴ 有效功率Ne 单位时间内泵输送出去的液体有效能头。
Ne
QH
1000
KW
⑵ 轴功率N:
泵轴输入的功率。
2. 离心泵主要工作参数: 2.5 效率
用η表示,是衡量泵的经济性的指标。
Ne 100 % N
η
N:泵输入功率 (轴功率) Ne:液体得到功率(有效功率) 两者的差别在于损失,包括流动损失、泄漏、机械摩擦等。
3. 离心泵结构
3.5.4 机械密封要求
机械密封对密封端面的加工要求很高,同时为了使密封端 面间保持必要的润滑液膜,必须严格腔制端面上的单位面积 压力,压力过大,不易形成稳定的润滑液膜,会加速端面的 磨损;压力过小,泄漏量增加。所以,要获得良好的密封性 能又有足够寿命,在设计和安装机械密封时,一定要保证端 面单位面积压力值在最适当的范围。
2. 离心泵主要工作参数:
2.6 汽蚀余量
离心泵的汽蚀余量是表示泵的性能的主要参数,• 符号Δhr 用 表示,单位为米液柱。

有效汽蚀余量
液体流自吸液罐,经吸入管路到达泵吸入口后• ,所富余的高出汽化压力 的那部分能头。用Δha表示。

泵的必须汽蚀余量
液流从泵入口到叶轮内最低压力点K处的全部能量损失,用Δhr表示。
m (1-1)’
2. 离心泵主要工作参数:
2.3 转速
泵的转速是泵每分钟旋转的次数,用n来表示。 单位:rpm,或r/s
一般离心泵转速970 rpm、1450 rpm、2950 rpm; 高速离心泵的转速可达 20000 rpm以上。
2. 离心泵主要工作参数:
2.4 功率
单位时间内所做的功。 单位: 1 N m 1 J 1 W
3. 离心泵结构
3.5 机械密封
3.5.1 机械密封的工作原理
机械密封是靠一对或数对垂直于轴作相对滑动的端面在 流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配 以辅助密封而达到阻漏的轴封装置。
3. 离心泵结构
3.5.2 机械密封的工作原理
常用机械密封结构如图所示。由静止环(静环)1、旋转 环(动环)2、弹性元件3、弹簧座4、紧定螺钉5、旋转环辅 助密封圈6和静止环辅助密封圈8等元件组成,防转销7固定 在压盖9上以防止静止环转动。旋转环和静止环往往还可根 据它们是否具有轴向补偿能力而称为补偿环或非补偿还。
叶轮的作用是将原动机的机械能直接传给液体,以增加 液体的静压能和动能(主要增加静压能)。
3. 离心泵结构
3.1 叶轮
叶轮有开式、半闭式和闭式三种,如图所示。
开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含 有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮 在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗 粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率 高,适用于输送不含杂质的清洁液体。一般的离心泵叶轮多为此类。
相关主题