基本概念:一、晶体与非晶体晶体:表示的是原子呈有序和有规则排列的物质。
(各向异性)非晶体:表示是原子呈无序的杂乱无章的排列形式的物质。
(各向同性)晶体和非晶体的对比项目晶体非晶体定义原子呈有序、有规则排列的物质原子呈无序、无规则堆积的物质性能特点具有规则的几何形状有一定的熔点,性能呈各向异性没有规则的几何形状有固定的熔点,性能呈各向同性典型物质石英、云母、明矾、食盐、硫酸铜、糖、味精玻璃、蜂蜡、松香、沥青、橡胶二、晶体的结构的概念(基本概念:)1、晶格:表示原子在晶体中排列的有规律的空间格架。
2、晶胞:能够完整地反映晶格特征的最小几何单元。
3、晶面:金属晶体中通过原子中心的平面。
4、晶向:通过原子中心的直线,可代表晶格空间的一定方向。
单晶体——晶体内部原子的排列位向是完全一致的晶体。
多晶体——由许多晶粒组成的晶体。
单晶体表现出各向异性,多晶体显示出各向同性,也称“伪无向性”。
五、金属的晶体结构的缺陷晶体缺陷——由于各种原因,实际晶体中原子的规律排列受到干扰和破坏,使晶体中的某些原子偏离正常位置,造成原子排列的不完全性。
1. 点缺陷——空位、间隙原子和置代原子无论是空位、间隙原子还是置代原子,在其周围都会使晶格产生变形,这种现象称为晶格畸变。
上述三种晶体缺陷造成的晶格畸变区仅限于缺陷原子周围的较小区域,故统称为点缺陷。
2.线缺陷——位错位错的特点之一是很容易在晶体中移动,金属材料的塑性变形就是通过位错的运动来实现的。
在晶体中,位错的晶格畸变发生在沿半原子面端面的狭长区域,故称为线缺陷。
单晶体示意图 多晶体示意图3.面缺陷——晶界和亚晶界晶界——晶粒与晶粒之间的分界面。
亚晶界——每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,亚晶粒之间的界面称为亚晶界。
在晶体中,晶界和亚晶界的晶格畸变均发生在一个曲面上,故称为面缺陷。
分钟【课后小结】基本概念:一、晶体与非晶体二、晶体的结构的概念三、金属晶格的类型四、金属的晶体结构的缺陷小结时提出若干个问题晶界过渡结构示意图亚晶界结构示意图结晶:液体 --> 晶体凝固:液体 --> 固体(晶体或非晶体)液体晶体钢锭浇铸示意图a)浇铸示意图 b)钢锭1—盛钢桶 2—滑动水口 3—钢锭模 4—钢液 5—底盘通常把金属从液态转变为固体晶态的过程称为一次结晶。
而把金属从一种固体晶态转变为另一种固体晶态的过程称为二次结晶或重结晶。
一、纯金属的结晶过程1、过冷度——理论结晶温度和实际结晶温度(T1)之间存在的温度差(△T=T0- T1)。
金属结晶时,冷却越快,其实际结晶的温度就越低,过冷度△T也就越大。
金属结晶时过冷度的大小与冷却速度有关。
冷却速度越快,金属的实际纯金属结晶时的冷却曲线a)理论结晶温度 b)实际结晶温度结晶温度越低,过冷度也就越大。
冷却曲线:冷却时,液体温度随时间延长而降低反映时间与温度纯金属的结晶条件:纯金属结晶的条件就是应当有一定的过冷度冷却速度越大,则过冷度越大。
2. 纯金属的结晶过程金属结晶的微观过程--结晶过程是形核和长大的过程金属结晶微观过程两个过程重叠交织形核长大形成多晶体二、晶粒大小对金属材料的影响晶粒愈细,强度、硬度愈高,塑性、韧性也愈好。
形核率——单位时间、单位体积所形成的晶核数,用字母N表示。
形核率N 、长大速度G 与过冷度?T 的关系细化晶粒的方法: (1)增加过冷度(2)变质处理在液体金属中加入变质剂(孕育剂),以细化晶粒和改善组织的工艺措施。
变质剂的作用:作为非自发形核的核心,或阻碍晶粒长大。
(3)振动处理——机械振动、超声振动,或电磁搅拌等。
振动的作用:使树枝晶破碎,晶核数增加,晶粒细化。
三、同素异构转变金属的同素异构转变——在固态下,金属随温度的改变由一种晶格转变为另一种晶格的现象。
由此产生的不同晶格的晶体称为同素异构晶体。
大多数金属在结晶终了之后及继续冷却的过程中,其晶体结构不再发生变化,但也有一些金属(如铁、钴、钛等)在结晶之后继续冷却时,还会出现晶体结构变化,从一种晶格转变为另一种晶格。
同素异构转变——金属在固态下随温度的改变由一种转变为另一种晶格的现象。
以不同晶格形式存在的同一种金属元素的晶体称为该金属的同素异构体。
铁是典型的具有同素异构转变特性的金属。
纯铁的同素异构转变可以用下式表示:特点:19世纪末,着名物理家居里在实验室里发现磁石的一个物理特工程技术中将外力称为载荷。
根据载荷的作用形式不同,又可分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭转载荷等。
工件在不同载荷形式下产生的变形2.内力内力——工件或材料在受到外部载荷作用时,为保持其不变形,在材料内部产生的一种与外力相对抗的力。
任何一种材料,在未受到外力作用时,内部原子之间都有平衡的相互作用的原子力,以保持其固定的形状。
当受到外力作用时,原来的平衡被破坏,其中任何一个小单元都和邻近的各小单元之间产生了新的力(内力)强调:内力是在外力作用下,材料内部产生的那部分相互作用力。
内力的特点:1、外力增加时,内力也增加,数值大小与外力相等,当内力达到极限值时,外力再增加,材料将被破坏。
2、内力的作用形式随外力作用方式而变化。
如材料在某一方向冷塑性变形与热塑性变形后的金属如何区别:冷塑形变化后晶粒沿变形方向拉长,性能趋于各向异性;晶粒破碎,位错密度增加,产生加工硬化,产生残余内应力。
热塑形如果加工的温度过高,晶粒粗大;若温度过低,引起加工硬化、残余内应力等;形成带状组织使性能变坏。
金属的塑性变形,在外形变化的同时,晶粒的形状也会发生变化。
通常晶粒会沿变形方向压扁或拉长。
形变强化应用中的优缺点:优点:1、是一种重要的金属强化手段,对那些不能用热处理强化的金属尤为重要。
2、可使金属具有偶然抗超载的能力。
塑性较好的金属材料在发生变形后,由于形变强化的作用,必须承受更大的外部载荷才会发生破坏,这在这一定程度上提高了金属构件在使用中的安全性。
缺点:也会给金属的切削加工或进一步的变形加工带来困难。
为了改善发生加工硬化金属的加工条件,生产中必须进行中间热处理,以消除加工硬化带来的不利影响。
分钟【课后小结】一、与变形相关的几个概念二、金属的变形三、金属材料的冷塑性变形与加工硬化小结时提出若干个问题塑性变形后的金属组织(3).强度指标 1)屈服强度——当金属材料出现屈服现象时,在实验期间发生塑性变形而力不增加的应力点。
屈服强度分为上屈服强度R eH 和下屈服强度R eL 。
除低碳钢、中碳钢及少数合金钢有屈服现象外,大多数金属材料(如高碳钢、铜合金、铝合金等),没有明显的屈服现象。
因此,这些材料规定用产生0.2%残余伸长时的应力作用屈服强度,可以替代R eL 。
规定产生0.2?残余伸长时的应力为条件屈服强度R p0.2,替代R eL ,称为条件(名义)屈服强度。
塑性材料:在外力作用下,虽然产生较显着变形而不被破坏的材料脆性材料:在外力作用下,发生微小变形即被破坏的材料,屈服强度表示材料将发生破坏。
屈服强度 — 是塑性材料选材和评定的依据。
2).抗拉强度Rm抗拉强度——材料在断裂前所能承受的最大的应力。
抗拉强度是材料在拉断前承受最大载荷时的应力。
它表征了材料在拉伸条件下所能承受的最大应力。
物理意义是在于它反映了最大均匀变形的抗力抗拉强度 — 是脆性材料选材的依据。
屈服强度与抗拉强度的比值称为屈强比。
屈强比小,工程构件的可靠性高,说明即使外载荷或某些意外因R eL ——试样的下屈服强度,N/mm2;F eL ——试样屈服时的最小载荷,N ;S o ——试样原始横截面面积,mm2。
R m ——抗拉强度,MPa ;F m ——试样在屈服阶段后所能抵抗的最大力(无明显屈服的材料,为试验期间的最大力), N ;170HBW10/1000/30:直径10mm的压头,在9807N(1000kg)的试验力作用下,保持30 s时测得的布氏硬度值为170。
600HBW1/30/20:直径为1mm压头,在294.2N(30kg)的实验力作用下,保持20 s时测得的布氏硬度值为600。
应用范围:主要用于测定铸铁、有色金属及退火、正火、调质处理后的各种软钢等硬度较低的材料。
2.洛氏硬度洛氏硬度原理:表示方法:符号HR前面的数字表示硬度值。
HR后面的字母表示不同的洛氏硬度标尺。
例:45HRC表示用C标尺测定的洛氏硬度值为45。
四、冲击韧性冲击韧性——金属材料抵抗冲击载荷作用而不破坏的能力。
材料的冲击韧性用夏比摆锤冲击弯曲试验来测定。
用试样所吸收的能量K的大小来作为衡量材料韧性好坏的指标,称为冲击吸收能量。
用U形和V形缺口试样测得的冲击吸收能量分别用KU和KV表示纯铁——含碳量小于0.0218%的铁碳合金。
钢——含碳量大于0.0218%而小于2.11%的铁碳合金。
铸铁——含碳量大于2.11%的铁碳合金。
四、典型铁碳合金结晶过程分析1.共析钢共析钢在室温时的组织是珠光体,合金的组织按下列顺序变化:2.亚共析钢亚共析钢的室温组织由珠光体和铁素体组成合金的组织按下列顺序变化:3.过共析钢室温下为珠光体和网状二次渗碳体组织。
钢中含碳量越多,二次渗碳体也越多。
4.白口铸铁五、铁碳合金的成份、组织与性能的关系含碳量越高,钢的强度、硬度越高,而塑性、韧性越低,这在钢经过热处理后表现尤为明显。
六、Fe-Fe3C相图的应用1.作为选材的依据2.在铸造生产中的应用九授课思路时间分配教学过程辅助手段及说明一、组织教学:考勤、学习准备等。
二、引入课题:举例引入新的课程。
【新课内容】§4-1 热处理的原理及分类现象:放在水中冷却的一根钢丝硬而脆,很容易折断;放在空气中冷却的一根较软、有较好的塑性,可以卷成圆圈而不断裂。
实验说明:虽然钢的成分相同,加热的温度也相同,但采用不同的冷却方法,却得到了不同的力学性能。
这主要是因为在不同冷却速度的情况下,钢的内部组织发生了不同的变化。
热处理的分类:§4-2 钢在加热及冷却时的组织转变一、钢在加热时的组织转变1.钢在加热和冷却时的相变温度在加热时钢的转变温度要高于平衡状态下的临界点;在冷却时要低于平衡状态下的临界点。
加热时的各临界点:A c1、A c3和A ccm冷却时的各临界点:A r1、A r3和A rcm2.奥氏体的形成钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
3.奥氏体晶粒的长大晶粒的长大是依靠较大晶粒吞并较小晶粒和晶界迁移的方式进行。
二、钢在冷却时的组织转变两种冷却方式:等温处理、连续冷却1.奥氏体的等温转变八课时安排学时九授课思路时间分配教学过程辅助手段及说明一、组织教学:考勤、学习准备等。
二、引入课题:举例引入新的课程。
【新课内容】§4-3 热处理的基本方法机械零件一般的加工工艺顺序:作用:消除前一工序所造成的某些组织缺陷及内应力,可以改善材料的切削性能,为随后的切削加工及热处理(淬火—回火)做好组织准备。