当前位置:文档之家› 雷达原理3-雷达接收机新

雷达原理3-雷达接收机新


第3章雷达接收机 4. 噪声带宽
功率谱均匀的白噪声, 通过具有频率选择性的接收线性系统后, 输出的 功率谱pno(f)就不再是均匀的了, 如图3.7的实曲线所示。 这个频带Bn称为 “等效噪声功率谱宽度”, 一般简称“噪声带宽”。 因此, 噪声带宽可由下 式求得:

0 pno ( f )df pno ( f0 )Bn
无源四端
网络
RA
Ga
RL
No kT0Bn
F No 1 NiGa Ga
图3.9 无源四端网络
第3章雷达接收机 2. 等效噪声温度
接收机外部噪声可用天线噪声温度TA来表示, 接收机外部噪声的额定功率为
NA=kTABn
(3.2.18)
把接收机内部噪声在输出端呈现的额定噪声功率ΔN等效到输入端来计算, 这
为了使接收机的总噪声系数小, 要求各级的噪声系数小、额定 功率增益高。而各级内部噪声的影响并不相同, 级数越靠前, 对 总噪声系数的影响越大。
第3章雷达接收机
自天线
馈线 Gf 1/Gf
接收机 放电器
Gg 1/Gg
限幅器 Gl 1/Gl
低噪声 高放
GR FR
混频器 Gc Fc
中频 放大器 至检波器
GI FI

(3.2.28)
第3章雷达接收机
一般都采用高增益(GR≥20dB)低噪声高频放大器, 因此式(3.2.28)
可简化为
F0

FR G f GgG1
(3.2.29)
若不采用高放, 直接用混频器作为接收机第一级, 则可得
F0

tc F1 1 G f GgG1Gc
(3.2.30)
式中 tc为混频器的噪声比, 本振噪声的影响一般也计入在内。
(3.2.11)
将No代入式(3.2.10)可得
F 1 N
k T0 BnGa
(3.2.12)
第3章雷达接收机
下面对噪声系数作几点说明: ① 噪声系数只适用于接收机的线性电路和准线性电路, 即 检波器以前部分。 ② 噪声系数只由接收机本身参数确定。
③ 噪声系数F是没有单位的数值, 通常用分贝表示
第3章雷达接收机 3.2.4 接收机灵敏度
接收机的灵敏度表示接收机接收微弱信号的能力。 灵敏度用接收机输入端的最小可检测信号功率Si min来表示。
第3章雷达接收机
已经知道, 接收机噪声系数F0为
或者写成
F0

Si So
/ /
Ni No
(3.2.32)
Si Ni

F0
So No
(3.2.33)
此时, 输入信号额定功率为
接收机中频的选择和滤波特性是接收机的重要质量指标之 一。
在中频的选择可以从30 MHz到4GHz之间。 如何选择接收机的中频? 短波接收机为什么选在465KHz?
在白噪声(即接收机热噪声)背景下应该选择何种滤波方式?
第3章雷达接收机
5. 工作稳定性和频率稳定度 工作稳定性是指当环境条件(例如温度、 湿度、 机械振动等) 和电源电压发生变化时, 接收机的性能参数(振幅特性、 频率特 性和相位特性等)受到影响的程度, 希望影响越小越好。
Pno ( f ) o
Pno (f0) Bn
(3.2.7)
f
第3章雷达接收机 3.2.2 噪声系数和噪声温度
1. 噪声系数
噪声系数的定义是: 接收机输入端信号噪声比与输出端信号噪声比的比值。
EsA ~ Esi ~
RA
Si Ni
接收机
线性电路
Ga
So
RL
No
F Si / Ni So / No
(3.2.9)
第3章雷达接收机
3. 动态范围 动态范围表示接收机能够正常工作所容许的输入信号
强度变化的范围。 最小输入信号强度通常取为最小可检测信号功率Si min,
允许最大的输入信号强度则根据正常工作的要求而定。 使接收机开始出现过载时的输入功率与最小可检测功率
之比, 叫做动态范围。
第3章雷达接收机 4. 中频的选择和滤波特性
包络检波器 视
90°
同频检波器
uI(t)


uQ(t)


限幅放大器
相位检波器 cos sin
图3.2 超外差式雷达接收机的一般方框图
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
• 混频器的干扰 • 组合频率干扰
fk pf0 qfs fi
No=kT0BnG1G2F0
(3.2.24a)

No N012 N2
(3.2.24b)
Ni=kT0Bn
F1,G1,Bn
F2,G2,Bn
No=No1 2+N2
第3章雷达接收机
No由两部分组成: 一部分是由第一级的噪声在第二级输出端呈现
的额定噪声功率No12,其数值为kT0BnF1G1G2, 第二部分是由第二
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
Si

Ni F0
So No
(3.2.34)
式中, Ni=kT0Bn为接收机输入端的额定噪声功率。于是进一步得

Si

k T0 Bn F0
So No
(3.2.35)
第3章雷达接收机
为了保证雷达检测系统发现目标的质量(如在虚警概率为 10-6的条件下发现概率是50%或90%等), 接收机的中频输出必须 提供足够的信号噪声比, 令So/No≥(So/No)min时对应的接收机输入 信号功率为最小可检测信号功率, 即接收机实际灵敏度为
第3章雷达接收机
6. 抗干扰能力 在现代电子战和复杂的电磁干扰环境中, 抗有源干扰和无 源干扰是雷达系统的重要任务之一。
第3章雷达接收机 7. 微电子化和模块化结构
采用单片集成电路, 包括微波单片集成电路(MMIC)、 中频 单片集成电路(IMIC)和专用集成电路(ASIC);其主要优点是体积 小、重量轻。
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机第3章雷达 Nhomakorabea收机第3章雷达接收机 3.1.2
1. 灵敏度 灵敏度表示接收机接收微弱信号的能力。 超外差式雷达接收机的灵敏度一般约为(10-12~10-14)W.
发射脉冲 噪声
被噪声淹 没的信号
图3.3 显示器上所见到的信号与噪声
另外,采用批量生产工艺可使芯片电路电性能一致性好,成本 也比较低。
第3章雷达接收机
3.2 接收机的噪声系数和灵敏度
接收机噪声的概率特性
第3章雷达接收机
• 对数接收器具有恒虚警的特性
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机 2. 额定噪声功率
高频输入
接收机 保护器
低噪声高 频放大器
混频器
中频放大器 (匹配滤波器)
检波器
视 频 至终端设备 放大器
高 频部 分
本振
第3章雷达接收机
天线
近程增益 控制(STC)
AGC
收发开关 接收机保护器 低噪声高频放大器
混 频器 中频放大器 中频增益衰减 中频滤波器
发射机 稳定本振
对数放大器
线性放大器
相干本振
F2 1 G1
(3.2.26)
第3章雷达接收机 三级级联推导
F0

F1

F2 1 G1

F3 1 G1G2
第3章雷达接收机 同理可证, n级电路级联时接收机总噪声系数为
F0

F1

F2 1 G1

F3 1 ..... G1G2

Fn 1 G1G2 ....Gn 1
(3.2.27)
F=10 lg F(dB)
(3.2.13)
第3章雷达接收机
④ 噪声系数的概念与定义, 可推广到任何无源或有源的四端网络。
接收机的馈线、放电器、移相器等属于无源四端网络, 其示意图见图 3.9, 图中Ga为额定功率传输系数。由于具有损耗电阻, 因此也会产生噪声, 下面求其噪声系数。
Ni kT0Bn
F1,GfGgGI,Bn
F2,GRGCGI,Bn
图3.12 典型雷达接收机的高、中频部分
将 图 3.12 中 所 列 各 级 的 额 定 功 率 增 益 和 噪 声 系 数 代 入 式 (3.2.27), 即可求得接收机的总噪声系数:
F0

Gf
1 GgG1

FR

Fc 1 GR

F1 1 GRGc
因此噪声系数的另一定义为: 实际接收机输出的额定噪声功 率No与“理想接收机”输出的额定噪声功率NiGa之比。
第3章雷达接收机
实际接收机的输出额定噪声功率No由两部分组成, 其中一部 分是NiGa(NiGa=kT0BnGa), 另一部分是接收机内部噪声在输出端所 呈现的额定噪声功率ΔN, 即
No=NiGa+ΔN=kT0BnGa+ΔN
S i
m in
相关主题