当前位置:文档之家› 光纤作业及答案要点

光纤作业及答案要点

第一次作业1.公式推导:单位长度光纤中斜光线的光路长度和反射次数分别为(1)S 斜=1/cos θ=S 斜 (2)斜η=r cos a 2tan θ=sr co 子η。

解:(1)如图1.2.2所示,设沿光纤的径向方向总长度为L ,则根据图中所示三角函数关系,得S=L/cos θ其中L=l 1 +l 2+…+l n (将光纤分割,在一小段上光路近似为直线)S 1= l 1/cos θ,S 2 =l 2 /cos θ,…,S n = l n /cos θ 从而得S 总=S1+ S 2+…+ S n =L /cos θ于是,单位长度中光线路程为S 斜=1/cos θ=S 斜。

(2)在沿横向方向上,光线传播的平面与光轴平面有一角r ,则光线在横向上传播的总距离为rL cos tan θ,从而总反射次数总η=ra L cos 2tan θ,于是,单位长度中的光线总的全反射次数斜η=r cos a 2tan θ=srco 子η2.推导光线方程: ()()d d r n r n r d s d s ⎡⎤=∇⎢⎥⎣⎦解: 由在各向同性媒质中程函方程()()r n r =∇ϕ,取光线的某一点的单位方向矢量s l()()r n l r s =∇ϕ()[]()()r n ds r d r ds d ∇=⎥⎦⎤⎢⎣⎡∇=∇ϕϕ ()[]()⎥⎦⎤⎢⎣⎡=ds dr rn ds d r n l ds d s从而()()d d r n r n r d s d s ⎡⎤=∇⎢⎥⎣⎦第二次作业见课本公式 P22-P26第三次作业1.什么是光纤,其传输的基本原理?答:光纤是光导纤维的简称。

它是工作在光波波段的一种介质波导,通常是圆柱形。

它把以光的形式出现的电磁能量利用全反射的原理约束在其界面内,并引导光波沿着光纤轴线的方向前进。

2.光纤的分类?答:光纤有三种分类方式:按光纤的传输模式、折射率分布、材料进行分类。

按传输模式分为单模光纤和多模光纤;按折射率分布分为阶跃折射率光纤和渐变折射率光纤;按材料分为石英光纤、多组分玻璃光纤、塑料光纤、液芯光纤和晶体光纤。

3.已知SI 光纤,n1=1.46,△=0.005,(1)当波长分别为0.85um 、1.3um 和1.55um 时,要保证单模传输a 范围是多少?解:由单模条件得V=a k 0)(2221n n -〈2.4048可得:单模光纤尺寸为a =1.202λ0/[π()(2221n n -)]因为∆=1-nn 12=0.005而n 1=1.46,所以n 2=1.4527当λ=0.85um 时,a 1 〈2.23;当λ=1.3um 时,a 2 〈3.41当λ=1.55um 时,a 3 〈4.07(2)如果a=8um ,则要保证单模传输波长范围是多少?解:λ> [πa ()(2221n n -)]/1.202,将n 1=1.46,n 2=1.452代入得λ>3.05um4.全反射产生条件是什么?答:当光线从光密介质进入光疏介质时即n1>n2,入射角大于临界角时发生全反射。

5.下列条件中,横电磁模(TEM)是( C ),横电模(TE)是( B ),横磁模(TM)是( A ),混杂模(HE 或EH)是( D )。

A. Ez ≠0,Hz =0; B. Ez =0, Hz ≠0; C. Ez =Hz =0; D. Ez ≠0, Hz ≠0。

6. 已知SI 光纤,n1=1.55,波长为0.85um ,光纤芯半径为5 um ,则要保证单模传输包层折射率应取范围是多少?解:由单模条件V=a k 0)(2221n n -〈2.4048,可得 1.202λ>πa()(2221n n -)代入数值的n 2>1.549,又n 2<n 1所以1.549<n 2<1.557.设介质各向同性而且均匀,试证明射线是走直线的。

()()r n ds dr r n ds d ∇=⎥⎦⎤⎢⎣⎡证明:由射线方程常数1220c ds dr ds r d =⇒= ()常数c r n =∴射线是走直线的8.已知一阶跃折射率光纤,n1=1.55,n2=1.46,a=2um ,求当波长为1.31um 时,可能传输的模式有那些?解:V=a k 0)(2221n n -=λπ2a)(2221n n -代入数值的V=4.99满足上述V 的Lp 模有:Lp01、Lp11、Lp21、 Lp02矢量模有:HE11、HE21、TE01、TM01、EH11、HE31、HE12。

9.n 1==1.48,n 2=1.473,光纤长度L=0.3Km, ∆=0.0047,求GI,SI 的模式色散?解: ∆= 1-nn 12=48.1473.148.1-=0.0047SI:[L τ∆]SI =C n 1∆=108348.1⨯⨯0.0047=2.32⨯1011-m s [τ∆]SI =6.96nsGI: [L τ∆]GI =2∆[L τ∆]SI=5.45⨯1014-ms[τ∆]GI =16.35ps第四次作业:2.1 试比较多模光纤和单模光纤色散产生的原因和大小。

答:光纤的色散有四种:(1)多模色散是由于各模式之间群速度不同而产生的色散。

由于各模式以不同时刻到达光纤出射端而使脉冲展宽。

计算分两种: SI: 1211n n n c n L SI-==⎥⎦⎤⎢⎣⎡∆∆τ∆GI: SIGRIN L c n L ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡τ∆∆∆τ∆222=1λλλσσσλλτ∆λW eff WD M d n d c L =-=⎪⎪⎭⎫ ⎝⎛≈⎥⎦⎤⎢⎣⎡'02020-(2)波导色散是由于某一传播模的群速度对于光的频率(或波长)不是常数,同时光源的谱线又有一定宽度。

(3)材料色散是由于光纤材料的折射率随入射光频率变化而产生的色散。

0020202020λλλλσσσλλτ∆λλλ⎪⎪⎭⎫ ⎝⎛-=-==-=⎪⎪⎭⎫ ⎝⎛-≈⎥⎦⎤⎢⎣⎡d n d c M D D M d n d c L M M M(4)偏振色散是由于光脉冲由同一波长光的同一模式运载,因不同的偏振态光的群速度不同导致的脉冲展宽。

多模光纤中色散主要是多模色散,材料色散和波导色散比较少,且有Δτm>Δτw 。

单模光纤中色散主要是波导色散、材料色散和偏振模色散。

其总色散参数。

总色散为22)()(弥散色散τ∆τ∆τ∆+=Total 且也有Δτm>Δτw 。

2.2减少光纤中损耗的主要途径是什么?答:光纤中的损耗主要有吸收损耗和散射损耗。

其中吸收损耗是由制造光纤材料本身以及其中的过渡金属离子和OH-等杂质对光的吸收而产生的损耗。

前者是由光纤材料本身的特性所决定的,称为本征吸收损耗,包括紫外吸收损耗和红外吸收损耗。

后者称为杂质离子的吸收。

减少其的方法是:光纤材料的化学提纯或是在工艺上进行改进,如避免使用氢氧焰加热。

散射损耗主要来源于光纤的制作缺陷和本征散射。

其中主要是折射率起伏、分布不均匀,还有芯-涂层界面不理想,有气泡、条纹或结石。

还有一类本征散射及其它的。

主要有瑞利散射、布里渊散射和喇曼散射,所以改变这种损耗的方法即就是选用较好的光纤材料,并且制作工艺尽可能要好。

2.4试分析影响单模光纤散射的因素,如何减少单模光纤中的色散? 答:单模光纤中的色散主要有三种:材料色散、波导色散和偏振色散。

材料色散、波导色散是由于光脉冲由同一模式运载,因光源有线宽,而不同波长光的群速不同导致的脉冲展宽。

两者又称为波长色散。

偏振模色散是由于光脉冲由同一波长光的同一模式运载,因不同偏振态光的群速不同导致的脉冲展宽。

对于单模色散,减少其的方法主要有三种:(1)设计在某一特定波长(或某一特定波段)色散为零的光纤。

(2)制作能维持光波偏振态的偏振保持光纤,一是人为地增加纤芯的椭圆度,二是人为地使光纤包层有非圆对称的应力施加区。

(3)减少光源的线宽可减少其波长色散。

第五次作业:3.1 试分析弯曲引起光纤损耗的机理及其计算主要困难所在。

答:弯曲引起的光纤损耗分为宏弯损耗和微弯损耗两类。

光纤弯曲时在光纤中传输的导模将由于辐射而损耗光功率,对此难于从理论上进行较细致而准确的计算分析。

主要原因是它和光纤实际结构、折射率分布等因素关系较密切,对于多模光纤还应考虑模式间的光功率耦合,情况更复杂。

3.2分析计算中光纤微弯损耗的主要困难何在?答:对于多模光纤,当光纤为正弦状微弯时即()()⎩⎨⎧≤≤'=为其他值z L z z k A z f d 00sin式中k ’为微弯空间频率,A d 为微弯幅值,L 为微弯曲长度,从而得微弯损耗()()()()⎭⎬⎫⎩⎨⎧+'+'+-'-'∝2/2/sin 2/2/sin 4L k k L k k L k k L k k L A c c c c d α 式中a k c /2∆=∆=β。

上述结果只适用于弱耦合情况。

对于单模光纤的微弯损耗()()∞+≈⎥⎦⎤⎢⎣⎡=s s p s p s n k s n k A p02210201021)(2)(8α式中()2.3,/106799.919=⨯=-p km dB A , n 1为纤芯折射率s 0为模斑半径。

3.3光纤和光源耦合时主要应考虑哪些因素?为什么?答:光纤和光源耦合时,为获取大耦合效率,应考虑两者特征参量相匹配的问题。

光纤的参数有:纤芯直径、数值孔径、截止波长(单模)、偏振特性; 光源参数有:发光面积、发光的角分布、光谱特性(单色性)、输出光功率和偏振特性常用的光源是半导体激光器和半导体发光二极管,半导体激光器的特点是发光面为窄长条,其远场图是一个细长的椭圆,这是光纤何其耦合的困难所在,半导体发光二极管为自发辐射产生的,发射方向性差但是均匀面发光,其发光性能类似于余弦发光体。

光纤和光源耦合有两种:直接耦合和加透镜耦合。

直接耦合就是把端面已处理的光纤直接对向激光器的发光面,这事影响耦合效率的主要因素是:光源的发光面积和光纤纤心总面积的匹配以及光源发散角和光纤数值孔径角的匹配。

利用透镜耦合可大大提高耦合效率,有五种情况:(1)端面球透镜耦合,其效果是增加光纤的孔径角(2)柱透镜耦合,利用柱透镜将光进行单方向会聚,使光斑接近圆形以提高效率,对位置的准确性要求较高(3)凸透镜的耦合,便于构成活动接头(4)圆锥形透镜耦合,此方法要求光纤的前端直径比光源的发光面大,以获最佳耦合效果(5)异性透镜耦合,透镜的一个端面为长条形,另一个端面为圆形,以便于光源进行耦合。

3.4 光纤和LD 或LED 耦合时主要困难是什么?试列举提高耦合效率的主要途径,你对此有何设想? 答:光纤和LD 或LED 耦合时主要困难是发光面与发光角分布的匹配问题,以LD 为例:利用透镜耦合可大大提高耦合效率,一般有5种方法 (1) 端面球透镜耦合,此时增加光纤的孔径角,从而显著地增加θc ,提高耦合效率(2) 柱透镜耦合,将LD 发光进行单方向会聚,使光斑接近圆形以提高耦合效率。

相关主题