几个常用术语:(重点理解)被控过程(对象)工艺参数需要控制的生产过程设备或机器等。
如锅炉汽包,发酵罐。
被控变量被控对象中要求保持设定值的工艺参数。
如汽包水位、发酵温度。
操纵变量受控制器操纵,用以克服扰动的影响使被控变量保持设定值的物料量或能量。
如锅炉给水量和发酵罐冷却水量。
扰动量除操纵变量外,作用于被控对象并引起被控变量变化的因素。
如蒸汽负荷的变化、冷却水温度的变化等。
设定值被控变量的预定值。
偏差(e) 被控变量的设定值与实际值之差。
在实际控制系统中,能够直接获取的信息是被控变量的测量值而不是实际值,因此,通常把设定值与测量值之差作为偏差。
§1.3 过程控制系统的两种表示形式一、方框图方框图是控制系统或系统中每个环节的功能和信号流向的图解表示,是控制系统进行理论分析、设计中常用到的一种形式。
方框图组成:方框----每一个方框表示系统中的一个组成部分(也称为环节),方框内添入表示其自身特性的数学表达式或文字说明;信号线---信号线是带有箭头的直线段,用来表示环节间的相互关系和信号的流向;作用于方框上的信号为该环节的输入信号,由方框送出的信号称为该环节的输出信号。
比较点----比较点表示对两个或两个以上信号进行加减运算,“+”号表示相加,“-”号表示相减;分支点----表示信号引出,从同一位置引出的信号在数值和性质方面完全相同。
带有输入输出信号的方框比较点分支点图1.3方框的组成单元示意图绘制方法:以如图1.4,锅炉汽包水位控制系统为例,系统中的每一个环节用一个方框来表示,四个方框分别表示:被控对象(锅炉汽包)、测量变送装置、控制器和执行器。
每个方框都分别标出各自的输入、输出变量。
如被控对象环节,给水流量变化会引起汽包水位的变化,因此给水流量(操纵变量)作为输入信号作用于被控对象,而汽包水位(被控变量)则作为被控对象的输出信号;引起被控变量(汽包水位)偏离设定值的因素还包括蒸汽负荷的变化和给水管压力的变化等扰动量,它们也作为输入信号作用于被控对象。
图1.4 锅炉汽包水位控制系统方框图在绘制方框图时应注意几点:(1)方框图中每一个方框表示一个具体的实物。
(2)方框之间带箭头的线段表示它们之间的信号联系,与工艺设备间物料的流向无关。
方框图中信号线上的箭头除表示信号流向外,还包含另一种方向性的含义,即所谓单向性。
对于每一个方框或系统,输入对输出的因果关系是单方向的,只有输入改变了才会引起输出的改变,输出的改变不会返回去影响输入。
例如冷水流量会使汽包水位改变,但反过来,汽包水位的变化不会直接使冷水流量跟着改变。
(3)比较点不是一个独立的元件,而是控制器的一部分。
为了清楚的表示控制器比较机构的作用,故将比较点单独画出。
二、管道及仪表流程图管道及仪表流程图是自控设计的文字代号、图形符号在工艺流程图上描述生产过程控制的原理图,是控制系统设计、施工中采用的一种图示形式。
该图是在工艺流程图的基础上,按其流程顺序,标出相应的测量点、控制点、控制系统及自动信号与连锁保护系统等。
由工艺人员和自控人员共同研究绘制。
在管道及仪表流程图的绘制过程中所采用的图形符号、文字代号应按照有关的技术规定进行。
下面结合化工部《过程检测和控制系统用文字代号和图形符号》HG20505-92,简单介绍一些常用的图形符号和文字代号。
1.图形符号过程检测和控制系统图形符号包括测量点、连接线(引线、信号线)和仪表圆圈等。
(1)测量点图1.5 测量点的图形符号(2)连接线(a) (b) (c)测量点在检测、控制系统中,构成回路的每个仪表(或元件)都用仪表位号来标识。
仪表位号由字母代号组合和回路编号两部分组成。
仪表位号中的第一个字母表示被测变量,后继字母表示仪表的功能;回路的编号由工序号和顺序号组成,一般用三位至五位阿拉伯数字表示,如下例所示:在管道及仪表流程图中,仪表位号的标注方法是:字母代号填写在仪表圆圈的上半圆中;回作用:保证在扰动作用下使被控变量始终保持在设定值上(2)随动控制系统(如火炮自动描准系统)特点:设定值是一个未知的变化量作用:保证在各种条件下系统的输出(被控变量)以一定的精度跟随设定值的变化而变化。
(3)程序控制系统(如数控机床系统)特点:设定值是一个按一定时间程序变化的时间函数作用:保证在各种条件下系统的输出(被控变量)以一定的精度跟随设定值的变化而变化。
(视频播放:2-14:272.负反馈概念:(重点理解)反馈——通过测量变送装置将被控变量的测量值送回到系统的输入端,这种把系统的输出信号直接或经过一些环节引回到输入端的做法叫做反馈。
负反馈——引回到输入端的信号是减弱输入端作用的称为负反馈,用“-”号表示反馈正反馈——引回到输入端的信号是增强输入端作用的称为正反馈,用“+”号表示。
二、开环控制系统开环控制系统-----控制器与被控对象之间只有顺向控制而没有反向联系的控制系统。
操纵变量可以通过控制对象去影响被控变量,但被控变量不会通过控制装置去影响操纵变量。
从信号传递关系上看,未构成闭合回路。
1、按设定值进行控制控制方式的原理:需要控制的是被控对象中的被控变量,而测量的只是设定值。
如图1.12(a)所示的换热器。
换热器的工作原理是:冷物料与载热体(蒸汽)在换热器中进行热交换,使冷物料出口温度上升至工艺要求的数值。
因此,系统中被控变量为冷物料出口温度,操纵变量为蒸汽流量。
操纵变量与设定值保持一定的函数关系,当设定值变化时,操纵变量随之变化进而改变被控变量。
控制系统方框图为图1.12(b)。
(a) (b)图1.12 按设定值控制的开环控制系统2、按扰动进行控制控制方式的原理----需要控制的仍然是被控过程中的被控变量,而测量的是破坏系统正常进行的扰动量。
利用扰动信号产生控制作用,以补偿扰动对被控变量的影响,故称按扰动进行控制。
如图1.13所示的系统示意图和方框图。
(a)原理图(b)方框图图1.13 按扰动控制的开环控制系统由于测量的是扰动量,这种控制方式只能对可测的扰动进行补偿。
对于不可测扰动及对象,各功能部件内部参数的变化对被控变量造成的影响,系统自身无法控制。
因此控制精度仍然受到原理上的限制。
§1.5. 过程控制系统的性能指标及要求一、过程控制系统的过渡过程1.几个概念(1)静态-----被控变量不随时间而变化的平衡状态在这种状态下,系统的输入(设定值和扰动量)及输出(被控变量)都保持不变,系统内各组成环节都不改变其原来的状态,其输入、输出信号的变化率为零。
而此时生产仍在进行,物料和能量仍然有进有出。
因此静态反映的是相对平衡状态。
(2)动态-----被控变量随时间而变化的不平衡状态当一个原来处于相对平衡状态的系统受到扰动作用的影响后,其平衡状态受到破坏,被控变量偏离设定值,此时控制器会改变原来的状态,产生相应的控制作用,改变操纵变量去克服扰动的影响,力图恢复平衡状态。
(3)过渡过程-----在设定值发生变化或系统受到扰动作用后,系统将从原来的平衡状态经历一个过程进入另一个新的平衡状态,这一过程就叫过渡过程。
一般来说,一个控制系统的好坏在静态时是难以判别的,只有在动态过程中才能充分反映出来。
系统在其进行过程中,会不断受到扰动的频繁作用,系统自身通过控制装置不断地施加控制作用去克服扰动的影响,使被控变量保持在工艺生产所规定的技术指标上。
因此,我们对系统研究的重点应放在控制系统的动态过程上。
2.过渡过程的几种形式(重点)常见的典型信号:控制系统在其运行的过程中,不断受到各种扰动的影响,这些扰动不仅形式各异,对被控变量的影响也各不相同。
为了便于对系统进行分析、研究,通常选择几种具有确定性的典型信号来代替系统运行过程中受到的大量的无规则随机信号。
常见的典型信号有:阶跃信号、斜坡信号、脉冲信号、加速度信号和正弦信号等。
其中阶跃信号对被控变量的影响最大,且阶跃扰动最为常见。
图1.14阶跃信号当A=1时称为单位阶跃信号)t r( At≥0t<0在阶跃信号作用下,被控变量随时间的变化有以下几种形式。
如图1.15 所示。
图中,y表示被控变量。
(1)发散振荡过程如图1.15 中曲线①所示,它表明系统受到扰动作用后,被控变量上下波动,且幅度越来越大,即被控变量偏离设定值越来越远,以致超越工艺允许的范围。
(2)非振荡衰减过程如图1.15 中曲线②所示。
它表明被控变量受到扰动作用后,产生单调变化,经过一段时间最终能稳定下来。
(3)等幅振荡过程如图1.15 中曲线③所示。
它表明系统受到扰动作用后,被控变量做上下振幅稳定的振荡,即被控变量在设定值的某一范围内来回波动。
(4)衰减振荡过程如图1.15 中曲线④所示,它表明系统受到扰动作用后,被控变量上下波动,且波动的幅度逐渐减小,经过一段时间最终能稳定下来。
(5)非振荡发散过程如图1.15 中曲线⑤所示。
它表明系统受到扰动作用后,被控变量单调变化偏离设定值越来越远,以致超出工艺设计的范围。
图1.15 过渡过程的基本形式上面五种过程形式中,非振荡衰减过程②和衰减振荡过程④是稳定过程,能基本满足控制要求。
二、过程控制系统的质量指标1.过程控制系统的目标及其理解一个控制良好的系统,在经受扰动作用后,一般应平稳、快速和准确地趋近或回复到设定值。
由于被控过程的具体情况不同,各种系统对平稳、快速、准确的要求也所不同,一个系统的平稳、快速、准确是相互制约的。
控制系统最理想的过渡过程应具有什么形状,没有绝对的标准,主要依据工艺要求而定,除少数情况不希望过渡过程有振荡外,大多数情况则希望过渡过程是略带振荡的衰减过程。
2.质量指标:图1.16过渡过程质量指标示意图。