当前位置:
文档之家› 201301-任晓春-高速铁路精密工程测量技术体系与特点
201301-任晓春-高速铁路精密工程测量技术体系与特点
1、轨道的内部几何尺寸
轨道的内部几何尺寸体现出轨道的形状,根据轨道上相邻点的相对 位置关系就可以确定,表现为轨道上各点的相对位置。轨道内部几 何尺寸的各项规定是为了给列车的平稳运行提供一个平顺的轨道, 即通常提到的“平顺性”。平顺性指标直接决定了列车运行速度, 旅客乘坐的舒适度。
内部几何尺寸主要通过轨距、轨向、高低、水平和扭曲等参数来保 证。利用这些参数检线列车行驶速度高(200~350km/h),为了达到在高速 行驶条件下列车的安全性和舒适性,要求: (1) 线路严格按照设计的线型施工,即保持精确的几何线形参数; (2) 轨道必须具有非常高的平顺性,精度要保持在毫米级的范围内。
为了满足上述要求,应根据线下工程和轨道铺设的精度要求设 计高速铁路的各级平面高程控制网测量精度。
2004年,铁道部决定在遂渝线开展无砟轨道综合试验,但在施工过 程中发现原有的测量控制网精度及控制网布设不能满足无砟轨道的 施工要求。为此,最早我国在遂渝线开展了无砟轨道铁路工程测量 技术的研究,并建立了遂渝线无砟轨道综合试验段精密工程测量控 制网。
背景-2
第6页
2006年随着京津城际、武广、郑西客运专线无砟轨道铁路的全面开 工建设,原有的铁路测量体系和技术标准已不能适应客运专线无砟 轨道建设的要求。
4 <铺轨测量>
直线以经纬仪穿线法测量;曲线用偏角法或切线支距法进行铺轨控 制。
第14页
2.2 传统的铁路工程测量方法的缺陷
缺陷-1
1、平面坐标系投影差大
第15页
采用1954年北京坐标系3°带投影,投影带边缘边长投影变形值最大 可达340mm /km,不利于GPS、RTK、全站仪等新技术采用坐标定 位法进行勘测和施工放线。
第17页
2.3建立高铁精密工程测量技术体系的必要性
必要性
第18页
传统铁路测量方法采用定测中线控制桩作为联系铁路勘测设计与施 工的线路平面测量控制基准,中线控制桩在线路竣工后已不复存在, 铁路平面控制基准经失去,因而在竣工和运营阶段的线路复测只能 通过相对测量的方式进行,这种方式只适合测量精度要求低的普速 铁路测量。
传统的铁路测量方法和精度已不能满足高速铁路建设的要求,要成 功的修建无砟轨道,必须建立一套与之相适应的精密工程测量技术 体系和标准。
背景-1
第5页
我国的高速铁路精密工程测量技术体系是伴随着我国高速铁路无砟 轨道工程的建设而逐步建立完善的。
国际上铺设无砟轨道较多的日本、德国等国家都有自己的无砟轨道 工程测量规范和技术标准。德国的铁路DB883标准规定了无砟轨道 施工控制网的等级和精度。在此基础上,德国各公司还根据不同的 无砟轨道结构制定了自己的测量技术标准和作业指南。如德国的旭 普林公司制定有适合旭普林无砟轨道体系的旭普林测量计划、测量 体系、精度要求和方法;博格公司也有一套博格板式无砟轨道施工 测量体系及精度要求。
根据上述科研成果,在吸取遂渝线无砟轨道综合试验段测量的实践 经验,并参考国外有关无砟轨道测量规范和标准的基础上,编制完 成了《客运专线无砟轨道铁路工程测量暂行规定》,由铁道部于 2006年10月16日发布实施。初步形成了我国高速铁路工程测量技术 标准体系。
背景-4
第8页
2008年根据铁道部经济规划院《关于委托编制2008年铁路工程建设 标准及标准设计的函》(经规计财函[2008]8号)的要求,在现行《客 运专线无砟轨道铁路工程测量暂行规定》基础上,以近年来高速铁 路工程测量成果为支撑,认真总结京津、武广、郑西、哈大、京沪、 广深等高速铁路测量的实践经验,于2009年8月完成了《高速铁路工 程测量规范》(TB10601-2009)的编制,由铁道部于2009年12月1日发 布实施。《高速铁路工程测量规范》(TB10601-2009)的发布实施, 形成了一套具有自主知识产权的高速铁路工程测量技术标准。
2、线路平面测量可重复性较差
以线路中线控制桩作为铁路勘测设计和施工的坐标基准,没有采用 逐级控制的方法建立完整的平面高程控制网,线路施工控制仅靠定 测放出交点、直线控制桩、曲线控制桩(五大桩)进行控制,当出现 中线控制桩连续丢失后,就很难进行恢复;由于路基地段没有分级 建立平面控制网,没有稳固的平面控制基准,施工后线路中线控制 桩就被破坏,只是在路基工程施工期间根据中线控制桩设置护桩进 行平面控制。无法使用统一的平面控制基准进行线下工程和轨道工 程施工。
高程控制测量—初测水准:高程系统为1956年黄海高程/1985 年国家 高程基准;测量精度: 五等水准(30 L ) 。
简介-2
第13页
2 <定测>
以初测导线和初测水准点为基准,按初测导线的精度要求放出交点、 直线控制桩、曲线控制桩(五大桩)—中线测量。
3 <线下工程施工测量>
平面测量以定测放出交点、直线控制桩、曲线控制桩(五大桩) 作为 线下工程施工测量的基准;高程测量以初测水准点为基准。
内容-2
第23页
(4) 轨道施工测量:无砟轨道混凝土底座及支承层放样、加密基标测 量、轨道安装测量、道岔安装测量和轨道精调测量等。
(5) 运营维护测量:构筑物变形监测、轨道几何状态检测。
内容-3
勘察 设计 阶段
控制网设计 初测 定测
平面控制网设计
高程控制网设计
建立框架控制网CPⅠ、基础 控制网CPⅡ
轨道的铺设不是以测量控制网为基准按照设计的坐标定位,而是按 照线下工程的施工现状采用相对定位进行铺设,这种铺轨方法由于 测量误差的积累,往往造成轨道的几何参数与设计参数相差甚远。 在既有线提速改造时,采用定位进行铺轨就出现了圆曲线半径与设 计半径相差太大、大半径长曲线变成了很多不同半径圆曲线的组合、 曲线五大桩位置与设计位置相差太大、纵断面整坡变成了很多碎坡 等问题。
(1) 对无砟轨道施工控制网精度设计的有关问题,包括控制网设计的 精度准则、精度阈值以及精度计算方法等进行了研究论证,为无砟
背景-3
第7页
轨道测量技术标准的制订提供理论依据;
(2) 根据客运专线无砟轨道铁路线下工程工后变形监测和无砟轨道平 顺性施工要求,反演推算各级控制测量的精度要求,取得了一系列 的成果。
第29页
3.3 高速铁路轨道铺设的精度要求
精度要求-1
第30页
高速铁路施工的定位精度决定着高速铁路的平顺性,高速铁路轨道 铺设应满足轨道内部几何尺寸(轨道自身的几何尺寸)和外部几何尺 寸(轨道与周围建筑物的相对尺寸)的精度要求。其中内部尺寸描述 轨道的几何形状,外部几何尺寸体现轨道的空间位置和标高。
高速铁路旅客列车行驶速度高(200~350km/h),为了达到在高速行驶 条件下保证旅客列车的安全性和舒适性,要求高速铁路必须具有非 常高的平顺性和精确的几何线性参数,误差必须保持在毫米级的范 围内。无砟轨道控制测量技术已成为无砟轨道建设关键技术之一。
通过参与无砟轨道工程建设的实践,深切感受到无砟轨道的施工质 量控制是无砟轨道能否成功的关键,无砟轨道施工控制测量精度则 显得更为重要,一旦测量精度出现问题,将为整个使用寿命期留下 隐患,不仅改善轨道几何形位参数十分困难,更需要花费高昂的代 价进行弥补。因此,无砟轨道能否成功一个重要的前提是在连续监 督条件下高质量的铺设无砟轨道,即要有高精度的测量技术和正确 的施工方法。
建立二等线路水准点或四等 高程控制网
建立线路控制网CPⅡ
利用二等线路水准基点或四 等高程控制网
第24页
咨询、评估
内容-4
施 工 阶 段
线下工程 施工阶段
轨道铺设 阶段
竣工阶段
一 般 地 段 利 用 CPⅠ 、 CPⅡ 和 二 等 线 路 水 准 基点并根据需要加密 施工控制网
重点工程地段建立独 立平面、高程控制网
第11页
2.1 传统的铁路工程测量方法简介
简介-1
第12页
传统的铁路工程是以线路中线控制桩作为铁路勘测设计和施工的坐 标基准,其测量作业模式和流程如下。
初测
定测
线下工程施工测量
铺轨测量
1 <初测>
平面控制测量—初测导线:坐标系统为1954年北京坐标系;测角中 误差12.5″(25″ n );导线全长相对闭合差:光电测距1 /6 000,钢尺丈 量1 /2 000。
高速铁路精密工程测量技术体系与特点
任晓春
中铁第一勘察设计院集团有限公司
2013年1月
主要内容
第2页
1.高铁精密工程测量技术体系建立的背景 2.建立高铁精密工程测量技术体系必要性 3.高铁精密工程测量的内容与目的 4.高铁精密工程测量体系的特点
第3页
1.高铁精密工程测量技术体系建立的 背景
概述
第4页
高速铁路的测量方法、测量精度与传统的铁路工程测量完全不同。 我们把适合于高速铁路工程测量的技术称为高速铁路精密工程测量; 把高速铁路测量中的各级平面高程控制网称为高速铁路精密测量控 制网,简称“精测网”。
第9页
2.建立高铁精密工程测量技术体系的 必要性
主要内容
第10页
2.1 传统的铁路工程测量方法简介 2.2 传统的铁路工程测量方法的缺陷 2.3 建立高铁精密工程测量技术体系的必要性
(1) 高速铁路平面、高程控制测量: CP0—基础框架平面基准网; CPI—基础平面控制网; CPII—线路平面控制网; CPIII—轨道控制网; 线路水准基点测量—二等水准测量; CPIII水准测量—精密水准测量。
(2) 线下工程施工测量:线路测量、桥涵测量、隧道测量等。
(3) 构筑物变形监测:路基变形测量、桥涵变形测量、路桥路隧过渡 段变形测量、隧道变形测量、区域地表沉降监测等。
精度要求-2
高速铁路轨道静态平顺度允许偏差
序 号
项目
1
轨距
2
轨向
3
高低
4
水平
5
扭曲(基长3m)