地理信息系统常用的地图投影
参考椭球面与我国大地原点
地面上选一点P,由P点投影到大地水准面P0点,使P0上的椭球面与大地 水准面相切, 此时过P0点的铅垂线与P0点的椭球面法线重合,切点P0称为 大地原点。同时要使旋转椭球短轴与地球短轴相平行(不要求重合),达 到本国范围内的大地水准面与椭球面十分接近,该椭球面称为参考椭球面。 我国大地原点选在我国中部陕西省泾阳县永乐镇。
1.地球椭球体基本要素
地球表面 大地水准面 参考椭求表面
地球自然表面、大地水准面、参考椭球面的关系
1.地球椭球体基本要素
4、地球的数学模型 地球的数学模型,是在解决其它一些大 地测量学问题时提出来的,如类地形面 、准大地水准面、静态水平衡椭球体等 。
GIS中的坐标系定义是GIS系统的基础, 正确定义GIS系统的坐标系非常重要。 GIS中的坐标系定义由基准面和地图投 影两组参数确定,而基准面的定义则由 特定椭球体及其对应的转换参数确定, 因此欲正确定义GIS系统坐标系,首先 必须弄清地球椭球体(Ellipsoid)、大地基 准面(Datum)及地图投影(Projection)三 者之间的关系。
高斯-克吕格投影
实质上是横轴切圆柱正形投影 该投影是等角横切椭圆柱投影。想象有一椭圆柱面横套在 地球椭球体外面,并与某一条子午线(称中央子午线或轴 子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用 一定的投影方法将中央子午线两侧各一定经差范围内的地 区投影到椭圆柱面上,再将此柱面展开即成为投影面。 X
用途:全球测图
用途:国家测图
有了基准面我们就可以操作了,我们的一切都 是基于基准面的。
对于地理坐标,只需要确定两个 参数,即椭球体和大地基准面。 (为什么?)
想想同一基准面的投影变换?
投影变换
不同基准面之间的变换?
不同椭球体之间的变换?
地理信息系统常用的 地图投影
高斯-克吕格投影 墨卡托投影 UTM投影 兰勃特投影 阿尔伯斯投影
总地球椭球体
总地球椭球体面 大地水准面
b
参考椭球体
参考椭球体面
P (北极)
M (大地原点)
b
P
铅 法 垂 线 线
a
地面
a
赤
道
赤
道
P'
P' (南极)
上述两种椭球大小相同:长半径a=6378140m,短半径b=6356755.3m,扁率α=1:298.257 参考椭球定位方法:椭球中心与地球中心不要求重合, 总地球椭球定位方法:椭球中心与地球中心重合, 椭球短轴与地球自转轴重合等条件。 要求椭球短轴与地球自转轴平行,使大地起始子午面与天 文起始子午面平行,使椭球面与本国大地水准面充分接近。
注意跨带计算!
由通用横坐标换算实际横坐标公式如下: Y实际= Y通用(去掉小数点向左数第7、8两位为带 号)-500000m
注:我国领土从13~23带,带号占两位,直接去掉头两位即 可。 例如:某点通用横坐标Y通用=20386575.310m,求该 点实际
横坐标。
首先,将 20386575.310m中20去掉(第7位为0,第8位为2) 则
N
Y
S ’
中央经线
X'
X X=4.528Km P Y=178Km Y 赤道
纵坐标西移500Km 纵坐标增加投影带号
X=4.528Km Y=20678Km
500Km
高斯平面直角坐标系以中央经线和赤道投影后为 坐标轴,中央经线和赤道交点为坐标原点,纵坐 标由坐标原点向北为正,向南为负,规定为 X轴, 横坐标从中央经线起算,向东为正,向西为负, 规定为Y轴。所以,高斯-克吕格坐标系的X、Y 轴正好对应一般GIS软件坐标系中的Y和X。
卡托投影”绘制出的地图。
特性
墨卡托Байду номын сангаас影没有角度变形,由每一点向
各方向的长度比相等,它的经纬线都是平行直线,
且相交成直角,经线间隔相等,纬线间隔从标准 纬线向两极逐渐增大。
墨卡托投影的用途
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地 图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方 向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有 有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规 定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形 图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺 图以制图区域中纬为基准纬线。基准纬线取至整度或整分。
x y z a a b
2
2
2
1
按一定的规则将旋转椭球与大地体套合在一起,这项工作 称椭球定位和定向。定位时采用椭球中心与地球质心重合,椭
球短轴与地球短轴重合,椭球与全球大地水准面差距的平方和
最小,这样的椭球称总地球椭球。
总地球椭球与参考椭球(水准面)的区别
铅垂线:地理空间中任意一点的 重力作用线。 水准面:自由静止的水面。 大地水准面 :与平均海水面重 合,并向大陆、岛屿延伸所 形成的封闭曲面
1.地球椭球体基本要素
3) 地球的旋转椭球体模型 地球的旋转椭球体模型,是为了测量 成果计算的需要,选用一个同大地体相 近的、可以用数学方法来表达的旋转椭 球来代替地球,且这个旋转椭球是由一 个椭圆绕其短轴旋转而成的。它是以大 地水准面为基础的。凡是与局部地区(一 个或几个国家)的大地水准面符合得最好 的旋转椭球,称为参考椭球。
高斯-克吕格投影与UTM投影换算
• 高斯-克吕格投影与UTM投影可近似采用 Xutm=0.9996 * X高斯,Yutm=0.9996 * Y高斯进行坐标转换。以下举例说 明(基准面为WGS84): Xutm=0.9996 * X高斯, Yutm=0.9996 * Y高斯 纬度值(X) 经度值(Y) 输入坐标(度)32 121 高斯投影(米) 3543600.9 21310996.8 UTM投影(米) 3542183.5 311072.4 3543600.9*0.9996 ≈ 3542183.5 (310996.8-500000)*0.9996+500000 ≈ 311072.4
Y实际= 386575.310-500000
=-113424.690m
讨论
如何快速判断是3度带还是6度带 ?
X,Y判断 ?
墨卡托投影
等角正切圆柱投影 定义
假设地球被围在一中空的圆柱里,其标 准纬线与圆柱相切接触,然后再假想地球中心有 一盏灯,把球面上的图形投影到圆柱体上,再把 圆柱体展开,这就是一幅选定标准纬线上的“墨
高斯投影的条件和特点
高斯投影的条件
中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴 投影具有等角性质 中央经线投影后保持长度不变
高斯投影的特点
中央子午线长度变形比为1,其他任何点长度比均大于1 在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最 大 在同一条纬线上,离中央经线越远,变形越大,最大值位于投影 带边缘 投影属于等角性质,没有角度变形,面积比为长度比的平方 长度比的变形线平行于中央子午线
高斯投影和UTM投影的异同
从比例因子看,高斯-克吕格投影中央经线上的比例系数为1, UTM 投影为0.9996, 从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线 起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自 西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°, 因此高斯-克吕格投影的第1带是UTM的第31带。 两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零, UTM北半球投影北伪偏移为零,南半球则为10000公里。
高斯--克吕格投影的优点
等角性别适合系列比例尺地图的使用与编制; 径纬网和直角坐标的偏差小,便于阅读使用;
计算工作量小,直角坐标和子午收敛角值只需计
算一个带。
由于高斯-克吕格投影采用分带投影,各带的投影 完全相同,所以各投影带的直角坐标值也完全一样, 所不同的仅是中央经线或投影带号不同。为了确切 表示某点的位置,需要在Y坐标值前面冠以带号。如 表示某点的横坐标为米,前面两位数字“20”即表示 该点所处的投影带号。
<1:5,000,000 基于圆的旋转体
>1:1,000,000 基于椭圆的旋转体
长半轴a、短半轴b,扁率f =(a-b)/a 如WGS84定义的参考椭球:
a=6378137.0meter
1/f=298.257223563 不同的参考椭球,参数不一样。
1.地球椭球体基本要素
• 我国测图历史上曾使用的参考椭球: 1、1952年前,海福特椭球; 2、1954年~1980年,克拉索夫斯基椭球 a=6378245m,b=6356863m,f =1:298.3 3、1980年后,1975年国际大地测量学与地球物理 学联合会推荐的椭球; a=6378140m,b=6356755m,f=1:298.257 4、WGS1984,a=6378137m,b=6356752m
地球椭球体只不过是一个具有长半轴, 短半轴和变率的椭球体,可以任意放置 的,它没有为我们规定度量的起点,所 以就有基准面的产生,而基准面就是规 定了度量标准。
基准面是利用特定椭球体对特定地区地球表面 的逼近,因此每个国家或地区均有各自的基准 面,我们通常称谓的北京54坐标系、西安80坐 标系实际上指的是我国的两个大地基准面.椭球 体与基准面之间的关系是一对多的关系,也就 是基准面是在椭球体基础上建立的,但椭球体 不能代表基准面,同样的椭球体能定义不同的 基准面,一般意义上基准面与参考椭球体是同 一个概念。
• • • • 中央子午线长度变形比为0.9996 该投影将世界划分为60个投影带,每带经度差为6度,已被许多国家作为地形 图的数字基础 投影带编号为1,2,3…60连续编号,第1带在177°W和180°W之间,且连续向 东计算 其它同高斯投影