当前位置:文档之家› 精细有机合成化学与工艺学课件--第9章氨基化

精细有机合成化学与工艺学课件--第9章氨基化


200℃~260℃
2013-8-7 18
二、萘酚类的氨解(亚硫酸盐存在的氨解)
萘酚与氨在酸式亚硫酸盐存在下引起的可逆变化, 称布赫尔(Bucherer) 反应:
NH2
NH2
OH + NH3
NaHSO3
NH2 + H2O
2013-8-7
19
1、反应历程
2-萘酚先从烯醇式互变异构为酮式,它与亚硫酸氢钠 按两种方式发生加成反应生成醇式加成物(Ⅰ)或 (Ⅲ),然后(Ⅰ)或(Ⅲ)与氨发生氨解反应生成 胺式产物(Ⅳ)或(Ⅴ),然后(Ⅳ)或(Ⅴ)发生 消除反应脱去亚硫酸氢钠生成亚胺式的2-萘胺,最后 再互变异构为2-萘胺。

气固相临氢接触催化胺化氢化
-H2O 脱水
CH3 CH NH
+H2 加氢
CH3CH2NH2
2013-8-7
9
•仲胺的生成
H CH3CH2NH2
+CH3CHO 加成胺化
OH CH CH3
-H2O
CH3CH2
N
CH3CH2-N=CHCH3
+H2
(CH3CH2)2NH
•叔胺的生成
OH (CH3CH2)2NH
2013-8-7
15
9.2.3 酚类的氨解(芳环上羟基的氨解)
一、苯系酚类的氨解
C6H5OH + NH3
C6H5NH2 + H2O
工业上实现酚类的氨解法一般有两种:
①气相氨解法: 它是在催化剂(常 为硅酸铝)存在下, 气态酚类与氨进 行的气固相催化 反应; ②液相氨解法: 它是酚类与氨水在 氯化锡、三氯化铝、 氯化铵等催化剂存 下于高温高压下制 取胺类的过程。
ArCl Cu(NH3)2+ ·
+
ArCl · Cu(NH3)2+
ArNH2 + Cu(NH3)2+ + NH4Cl ArOH + Cu(NH3)2+ + ClAr2NH + Cu(NH3)2+ + HCl
+ 2NH3
k1
+ OH
-
ArCl · Cu(NH3)2 ArCl · Cu(NH3)2
k2
+ + ArNH2
+ 2NaHSO3
NH
互变异构
NH2
H
H SO3Na
亚胺式
烯胺式
(Ⅴ)胺式生成物
2013-8-7 22
2、适用范围(反应规律)
1-萘酚和2-萘酚中的羟基都能在酸性亚硫酸盐存在下置换成氨 基,但它们的磺基衍生物并非都能顺利进行这类反应,其规律 为: (A)当羟基处于l位时,2位和3位的磺基对氨解反应起阻碍作 用;若在4位上存在磺基,则反应容易进行。 (B)当羟基处于2位时,3位或4位的磺基对氨解起阻碍作用, 而1位的磺基起促进作用。 (C)当羟基与磺基不处于同一环时,磺基的影响很小。 注意:Bucherer反应是可逆的,因此有时也用于从萘胺衍生 物水解制备相应的萘酚衍生物。例如对氨基萘磺酸的水解制 1-萘酚-4-磺酸。这时,磺基位置的影响也遵循上述规律。
第9章 氨基化
2013-8-7
1
本章教学基本内容和要求
1、羟基化合物的氨解:了解醇类的氨解、酚类的氨解,掌握苯胺、防老 剂丁的制备;了解亚硫酸盐存在下的氨解:掌握 Bucherer反应的适用范围 及应用,了解反应历程。 2、卤素的氨解 a.反应理论:掌握催化氨解和非催化氨解的适用范围,反应历程及动力 学方程。 b.影响因素:掌握胺化剂、卤素、溶解度、搅拌、温度对卤素氨解反应 的影响。 c.实例:掌握邻硝基苯胺及2-氨基蒽醌的制备。 d.芳胺基化:掌握安安蓝B色基的制备。 3、了解羰基化合物的氨解。 4、了解磺基及硝基的氨解。 教学重点: ☞卤素的氨解。 ☞亚硫酸盐存在下的氨解:Bucherer反应。 ☞Hofmann重排反应。 教学难点: ☞催化氨解和非催化氨解的适用范围、反应历程及动力学方程。 ☞Bucherer反应的适用范围、应用、反应历程。 ☞Hofmann重排反应的应用、反应历程。
k3
2013-8-7
29
3、用氨基碱氨解
当氯苯用KNH2在液氨中进行氨解反应时,产物中有将近一 半的苯胺,其氨基是连结在与原来的氨互为邻位的碳原子上:
按苯炔历程进行 亲核试剂 碱的形式
注意:邻位氢原子是生成苯炔中间体的必要因素。
2013-8-7 30
卤代芳烃氨解反应的基本特征: 1、芳环上电子云密度越低,反应越容易进行;芳环上的吸电子基 团越强,离去基团越容易离去,反应越容易进行; 2、卤素不同,反应活性不同。 3、吸电基团会使芳环上电子云密度减小,且主要影响邻、对位; 4、卤代芳烃上吸电基团较弱时反应难于进行,必须借助于催化剂 才能进行,催化剂多用不同价态的铜。
+ NaHSO3
+ H2O
(Ⅳ)胺式生成物
NH
互变异构
NH2
亚胺式
烯胺式
2013-8-7
21
反应历程
H
H O H
+ NaHSO3 - NaHSO3
H
H
OH SO3Na H
+ NH3 + H2O
H
H SO3Na
H
H SO3Na
(Ⅱ)酮式加成物
(Ⅲ)醇式加成物 H H
H
H
NH2 SO3Na - 2NaHSO3 H
+ 2NH3 + NH4Cl
Cl
NO2
NO2
2013-8-7
28
2、催化氨解
一价铜或二价铜都可以作为芳氯化合物氨解时的催化剂, 选择何者则要根据具体条件而定。当反应温度低于210℃ 时,使用一价铜盐的反应速度快,当反应温度高于210℃ 时,则使用二价铜盐的反应速度快。
•适用范围:对于不活泼的卤素衍生物,如氯苯、1-氯萘、1-氯 萘-4-磺酸和对氯苯胺,要在 铜催化剂 存在下,才能反应。 •反应历程:分两步进行: 第一步 ArCl + Cu(NH3)2+ 第二步
+CH3CHO 加成胺化
(CH3CH2)2
N
CH
CH3
-H2O
(CH3CH2)2-N-CH=CH2
+H2
(CH3CH2)3N
2013-8-7
10
9.2 羟基的氨解
9.2.1
醇类的氨解
例 如: 乙 醇 连 续 氨 解 生 产 乙 胺。
2013-8-7
11

高压液相氨解 (1)用于C8~10醇的氨; (2)催化剂:骨架镍或三氧化二铝。 (3)压力:常压~0.7MPa。 (4)温度:90~190℃。
Cl
NO2
NH2
115~120℃,常压
NO2 30% NH3
2013-8-7
NO2 NO2
NO2
27
9.3.1卤代芳烃的氨解(芳环上卤基的氨解)
一、反应理论
按卤素衍生物活泼性的差异,可分为非催化氨解和催化氨解。
1、非催化氨解 •适用范围:活泼的卤素衍生物,如芳环上含有硝基的卤 素衍生物,通常以氨水处理时,可使卤素被氨基置换。 •反应历程:属芳香族的亲核取代反应。例如: •反应动力学:属双分子反应(SN2反应),反应速度直接 正比于氨和卤化物的浓度,。 NH2
H2O
CH N
H 加氢
2013-8-7
NH CH2
3
二、反应的目的

制备脂肪族伯、仲、叔胺及季铵盐
ClCH2CH2Cl +
H2O NH3 ~2MPa
H2NCH2CH2NH2
(H5C2)3N+ CH2 Cl-
N(C2H5)3 + ClCH2

制备芳胺
O2N Cl
NH3
O2N
NH2
2013-8-7
4
三、氨基化剂
主要用于需避免水解副反应的氨基化过程。
Cl CN

液氨
缺点:操作压力大,过量的液氨较难再以液氨 的形式回收。
NO2


氨水
氨气
工业氨水的浓度一般为25%,是广泛使用的 胺化剂。
优点:来源易得,操作方便,过量的氨可用 水吸收循环使用。


铵盐
有机胺(伯、仲、叔胺)
2013-8-7
5
9.2 羟基的氨解
2013-8-7
16
OH + NH3
NH2 2 NH
NH2 + H2O
以苯酚气相催化氨解制苯胺为例:
+ H2O

2013-8-7
17
其他酚类的氨解: 1、甲苯胺的生产:
OH NO2
140℃
NH2 NO2
30h CH3 CH3
2、防老剂丁的生产:
NH2 OH + NH2 · HCl NH + H2O
2013-8-7
8
即将醇、氨和氢的 气态混合物在 200℃左右、常压 200oC,压力 ROH , NH3 , H2 产品胺 Cu-Ni催化剂 或不太高的压力下 通过Cu-Ni催化剂 催化醇脱氢 而完成的。其整个 催化加氢 反应过程包括:醇 加氢 加成胺化 脱水 脱氢 的脱氢生成醛或酮、 羟基胺 醇 醛 烯亚胺 胺 NH3 醛或酮的加成胺化、 OH 羟基胺的脱水和烯 O +NH3 -H2 CH3-C-NH2 CH3CH2OH CH3-C-H 亚胺的加氢生成胺 加成胺化 脱氢 乙醛 H 乙醇 1-羟基乙胺等步骤。
环己胺的制备
OH
H2O
NH2
2013-8-7
13
9.2.2 环氧烷类的加成胺化
工业上的乙醇胺类是以环氧乙烷和氨反应制得:
相关主题