当前位置:文档之家› 8寄存器与存储器知识讲解

8寄存器与存储器知识讲解


分频器的输出波形:
4分频波形
小结: 74LS138译码器地址输入端A2A1A0(CBA)的取值, 决定了分频比,将CBA代表的二进制数转换成十进制数再加1,
即为分频系数。 思考: 若ABC=000,001、---111分别是多少分频器?
2020/10/8
作业题
6.4、6.5、6.6
2020/10/8
1.单向移位寄存器
(1)右移位寄存器
串行 数据 输入
清零端
2020/10/8
同步移位时 钟输入端
工作过程:
假设要传送数据1011。
10 12
3 4
1 1 0
1
0 1 1
0
0 0 1
1
0 0 0
1
串入串出:前触发器输出端Q与后数据输入端D相连接。当时 钟到时,加至串行输入端DSR的数据送Q0,同时Q0的数据右移 至Q1,Q1的数据右移至Q2,以此类推。将数码1101右移串行输 入给寄存器共需要4个移位脉冲
项目八 寄存器与 存储器及应用
8.1 寄存器 8. 2 存储器 8.3 寄存器与存储器例表 本章小结
2020/10/8
主要内容
寄存器的功能、分类、结构、工作原理; 存储器的功能、分类、结构、工作原理; 寄存器、存储器的应用。
主要技能
寄存器与存储器的正确使用技能和功能测试技能; 熟练应用寄存器和存储器构成具特定功能的逻辑电路; 能完成电路的安装与功能调试。
2020/10/8
3.存储器的分类: 按照内部信息的存取方式可分为:
随机存取存储器RAM:存放临时性的数据或中间结果。 只读存储器ROM:存放永久性的、不变的数据。
随机存取存储器RAM按硬件结构可分为: 静态存储器(SRAM) 动态存储器(DRAM) 只读存储器ROM按数据输入方式可分为: 掩膜式存储器(ROM) 可编程存储器(PROM) 可擦除存储器(EPROM)
8.2
8.2.1 存储器的概述
存储器
1.存储器:用于长期存储大量数据、资料及运算程序等二进 信息的单元。
2.发 展:
穿孔卡片 纸带 磁芯存储器
半导体存储器
半导体存储器的优点:容量大、体积小、功耗低、存取速 度 快、使用寿命长等。
寄存器与存储器的区别: 寄存器:用于暂时存储二进制数据或代码的电路。 存储器:用于长期存储大量二进数据或代码的电路。集成很高。
串入串出:原理与前述相同,略。
2020/10/8
3. 集成双向移位寄存器——74LS194 74LS194是四位双向移位寄存器。
引脚及功能简介:
DSR: 右移串行数据输入端 DSL: 左移串行数据输入端 D0~D3:并行数据输入端 Q0~Q3: 数据输出端 CP :时钟输入端(上升沿有效) S0、S1: 工作方式控制端 RD : 数据清0输入端(低电平清0)
字8数该根:R列3A2M选X存择8储=线矩2Y56阵0~Y共7。需要32根行选择线X0~X31和
存储器容量: (字数)×(位数)= 256×4
2020/10/8
2.RAM的存储单元 按结构不同可分为: 静态存储单元SRAM、动态存储单元DRAM 静态存储单元(SRAM)
利用CMOS构成的基本RS触发器来存储信息。保存的信息不易 丢失,可长期保存。典型的SRAM的存储单元需要六个晶体管 (三极管)构成。用于小容量、高速存储器。
2020/10/8
基本概念
寄存器; 移位寄存器; 序列信号; 随机存取存储器; 只读存储器。
2020/10/8
寄存器与存储器的区别:
寄存器:用于暂时存储二进制数据或代码的电路。 存储器:用于长期存储大量二进数据或代码的电路。集成很 高。
2020/10/8
8.1 寄存器及应用
寄存器:用于暂时存储二进制数据与代码的电路。 分 类:基本寄存器、移位寄存器。 组 成:触发器和门电路。一个触发器能存放一位二
动态存储单元(DRAM) 利用MOS管的栅极电容C存储电荷来储存信息,电容是会漏 电的,所以必须通过不停的给电容充电来维持信息,这个充电 的过程叫再生或刷新(REFRESH)。由于电容的充放电是需要
2020/10/8
相对较长的时间的,DRAM的速度要慢于SRAM。DRAM的一个存 储单元只需要一个晶体管和一个电容。因此,DRAM的成本、 集成度、功耗等明显优于SRAM。
以下是可编程分频器的工作过程演示:
2020/10/8
S1S0=11;并行置数。
1
1
S1S0=10;左移传送。
1
S1S0=11;并行置数。
0
0
1
1
1
1
1
0
1
1
1
1
1
1
1
1
4 清零 2020/10/8
3 2 CP1
0 11 10 0 11 01 0 10 11 0 01 11
0 11 11 0 11 11 0 11 11 0 11 11
2020/10/8
2020/10Biblioteka 88.1.2 移位寄存器的应用 一、移位寄存器构成序列脉冲发生器
序列信号:是在同步脉冲的作用下 按一定周期循环产生的一串二进制信 号。如:0111-----0111,每4位重复一 次,称为4位序列信号。
序列脉冲信号广泛用于数字设备 测试、通信和遥控中的识别信号或 基准信号等。
2020/10/8
2. 可编程分频器 可编程分频器:指 分频器的分频比可 以受程序控制。
2020/10/8
工作原理分析: 电路的结构特点:
两片74LS194的S1=1,
S0 2Q。0
若S1S0=10,则74LS194工作在左移位状态,
S1S0=11 ,则74LS194工作在并行置数状态。
74LS138的8个输出端接两 片74LS194的并行输入数据端。 由于74LS138的输出状态,由输入端ABC决定,故移位的数 据是可变化的。
移位寄存器组成的8位序列信号发生器,序列信号为: 00001111
2020/10/8
2020/10/8
2020/10/8
产生序列信号的关键:是 从移位寄存器的输出端引出一 个反馈信号送至串行输入端, 反馈电路由组合逻辑门电路构
成。n 位移位寄存器构成的序
列信号发生器产生的序列信号
的最大长度P=2n。
改进电路: 当n=4时,反馈逻辑表达式为。
D SR Q 3 Q 1,Q 3 Q 0 当n=8时,反馈逻辑表达式为。
D S R Q 7 Q 5 Q 4 Q 3 ,Q 7 Q 3 Q 2 Q 1
计数器的最大长度:N=2n-1
2020/10/8
三、数据显示锁存器 在计数显示电路中,如果计数器的计数值变化的速度很快,
2020/10/8
第二步:进行读写操作 如果此时读写控制电路有相应的有效信号,则实现对选中 存储单元的信息进行读写操作。
二、各组成的结构与工作原理 1. 存储矩阵
用于存储信息的主体电路。它由若干存储单元以矩阵的形 式构成。有若干行和若干列。
如:存储容量为256X4=1K的存储器,它由1024个存储单元以32 行和32 列矩阵的形式构成的。它的一个字由4位二进制数组成。
进制数码;N个触发器可以存放N 位二进制数码。
8.1.1 寄存器的结构、原理
一、基本寄存器 仅有并入、并出存取数据功能的寄存器。
1. 组成: N个D触发器构成。
2020/10/8
输出端
控制时钟
脉冲端输入 0
1
0
1
0
1
0
1
2.工作原理
数码输入端
CP不为上升沿时 , R D =1,寄存器输出保持不变 CP 上升沿时,且 R D =1,输入端D0-D3送寄存器。
行地址加列地址共8位二进数A0~A7 ,可对256个字单元进行 编码,这样每个字就有一个地址号了。
2020/10/8
地址译码电路:用于将地址号转换为寻找所需存储数据的信息 电路。即;通过所给的地址号可查找到所要信息。
分类:根据内容结构不同可分为:
SRAM(静态随机存取)、DRAM(动态随机存取)。 优点:读写方便,使用灵活。 缺点:掉电丢失信息。
一、组成:
行列地址 译码电路
存储矩阵 (n行m列)
片选和读写 控制电路
2020/10/8
工作过程: 第一步:选中存储信息
当给定行和列的地址时,行和列的地址译码器分别选中相 应的行线和列线,这两种输出线(行与列)的交点处的存储单 元便被选中(注:选中的存储器可能是一位也可能是多位)。
R D =0, 异步清零。
2020/10/8
二、具有锁存功能的寄存器 1.锁存器的结构及工作原理
由D锁存器组成。
CP---即为送数脉冲输入端,又为 锁存控制信号输入端,即使能信号, 低电平有效。
当CP=0时,Q =D,电路接收输入数据;即当使能信号到来 (不锁存数据)时,输出端的信号随输入信号变化;
2020/10/8
4.基本概念: 存储单元:存储一位二进制数的最小电路; 字:构成二进制信息的最小集合(1、2、4、 8、16); 存储容量:存储二进制数的总量,单位:K(210=1024)。
2020/10/8
8.2.2 随机存取存储器RAM
RAM:可以在任意时刻,对任意选中的存储单元进行信息 的存入(写)或取出(读)的信息操作。
个数字,则,上述电路就构成8进制计数器。注:此处译码器
不是LED管显示译码器。
计数前,如果不清零,由于随机性,随着计数脉冲的到来, Q3Q2Q1Q0 的状态可能进入如下的无效循环: 0100→1001→0010→0101→ 1011→0110→1101→1010
2020/10/8
无效循环:译码器无法对八种状态译码,我们把这种循环称为 无效循环。因此,不允许寄存器工作在这种循环状态。
相关主题