!
模拟电路设计性实验~音调控制电路的设计
实验目的:
★掌握音调控制电路的设计与参数的估算与测试
★提高综合电路和设计和调试的能力。
实验原理:音调控制是指人为地调节输入信号的低频、中频、高频成分的比例,改变音响系统的频率响应特性,以补偿音响系统各环节的频率失真,或用来满足聆听者对音色的不同爱好。
反馈式音调控制电路只改变电路频率响应特性曲线的转折频率,而不改变其斜率。
反馈式音调控制电路可以很好地补偿音响系统的频率失真,而且适应于人耳的听觉特性。
电路设计如图所示。
电路中R1、R2、C3、C4和RP1组成低音反馈网络R6、C1、RP2组成高音反馈网络,对于输入中的低频成分,C1可视为开路,其等效电路如图所示。
对于输入中的高频成分C3、C4可视为短路,其等效电路如图所示。
?
1、反馈式音调控制等效电路
2、低音控制等效电路
3、高音控制等效电路
)
将图电路进行仿真得到表仿真数据。
图(a)、(b)、(c)分别用示波器仿真了电位器调节在不同的位置时的输出波形。
(a)RP1、RP2 电位器分别调到50%处时的仿真波形)
(b)电位器RP1调到100%RP2调50%,输入为100HZ时的仿真波形
(c)电位器RP1调到50%RP2调到0%,输入为5000HZ时的仿真波形图电位器RP1、RP2处在不同位置时的仿真波形。
从以上仿真结果可以看出当可变电阻RP1调节在100%时,低音提升量最大,约为。
当RP1调节在0%时,低音衰减量最大约为 mV。
当RP2调节在0%时,高音提升量最大约为,当RP2调节在100%时,高音衰减量最大约为128mV。
实验结论:音调控制器只对低音频和高音频的增益进行提升和衰减,中音频的增益保持不变。
因此,音调控制器的电路可以由低通滤波器与高通滤波器构成。
调试心得及体会:人类的每一个进步都是从科学上一点一滴累积起来的,在调试的过程中我渐渐感受到了科学的兴趣。