高精度稳流电源电路设计
(5) 提供电源过流保护,电源过压/欠压保护; 3 电路原理 3.1 主回路 主回路采用 Buck 变换器,原理框图如图 1 所示 图 1 主回路框图 3.1.1 原理简介: 50Hz、380V 三相交流输入电压经 EMI 电网滤波器阻断噪音信号,通 过隔离变压器降成 100V 左右的交流电压,再经过整流滤波,变成 Buck 变换 器所需要的平滑直流电压。图 1 中,当 N1 或者 N2 导通时,电感 L1 在未饱 和前,电流线形增加,电感 L11 和 N2 都关断时,由于电感 L1 中的磁场作用,改变 L1 两端的电 压极性,左负右正,续流二极管 V1 导通,以保证输出电压和电流不变。由 于磁场负载是一个感性负载,当电源不工作时,磁场负载必然会产生一个反 向的电压,二极管 V2 用来将这一反向的负载能量释放掉。
3.1.2 关键元器件的选择 (1) 开关管 N1,N2 的选择:采用三菱公司 100A 单管 IGBT(CM100H-12)。绝缘栅双极型晶体管(IGBT)具有 MOSFET 的工作速度 快、输入阻抗高、驱动电路简单和 GTR 的阻断电压高、饱和导通压降低、载 流能力强的优点。开关管的驱动采用变压器隔离。与不用变压器,直接驱动 相比,主回路对驱动电路的干扰小,不易引起震荡。由于变压器工作比的限 制,若只用一个 IGBT,使得占空比不能超过 50%。因此,开关管由两个 IGBT 并联,用控制电路输出的相位相差 180 的脉冲信号驱动。这样,占空比就能 达到 96%,使得输出电流能在很宽范围内调节。而且,开关管的损耗也能减 少一半。 (2) 反馈采样电路:通常,电源的反馈采样都采用电阻的形式。然 而,由于本电源的输出电流较大,若使用电阻采样,电阻的功耗比较大。电 阻的过分发热,必然会引起电阻阻值的变化,从而引起反馈采样电压的变 化,无法满足电源的电流精度要求。这部分功耗,对整个电源而言,也是无 用的能量损耗。而且,电阻的体积也比较大。采用电阻反馈显然是不可取 的。因此,采用额定值 25A 的霍尔电流传感器(CSM025A)作为反馈的采样。 该传感器具有良好的线性度、抗干扰能力强、低温漂、宽频带等优点,能够 很好的满足电源的电流精度要求。
3.2 驱动电路 驱动电路的原理框图如图 2 所示 图 2 驱动电路框图
高精度稳流电源电路设计
1 前 言 作为电真空微波放大管的一种,速调管以其功率大﹑效率高的优势得 到了广泛的应用。而速调管一般都需要外加一个聚焦磁场。为了使速调管电 子枪所打出的电子注不被散射损耗掉,这就要求磁场电源具有较好的电流稳 定度。 2 性能指标 (1) 输入:三相 50Hz、380V; (2) 输出:额定电压 80V,额定电流 25A,要求 0∽25A 连续可调; (3) 输出电流纹波:0.08A; (4) 输出电流稳定度:0.08A;