当前位置:文档之家› 红外光谱基本原理

红外光谱基本原理


C,S)
(2)2500 2000 cm-1 (4)1500 1300 cm-1
(3)2000 1500 cm-1 双键伸缩振动区
C-H弯曲振动区
24
常见基团的红外吸收带
=C-H O-H C-H CC C=C C=O C-C,C-N,C-O C-X
O-H(氢键) S-H P-H CN
5
红外光谱与紫外可见光谱的区别
1.光谱产生的机制不同
分子振动和转动能级的跃迁;价电子和分子轨道上的电子在电子能级 上的跃迁。
2. 研究对象不同
在振动中伴随有偶极矩变化的化合物;不饱合有机化合物特别是具有 共轭体系的有机化合物。
3.可分析的试样形式不同,使用范围不同
气、液、固均可,既可定性又可定量,非破坏性分析;既可定性又可 定量,有时是试样破坏性的。
6
红外光谱的表示方法
红外光谱图:
纵坐标为透光率T%,横坐标为波长λ(m )或波数1/λ(cm-1) 可以用峰数,峰位,峰形,峰强来描述。 应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度;
7
第一节 红外光谱法的基本原理 一、产生红外吸收的条件
满足两个条件:
(1)红外辐射光子的能量与分子振动能级跃迁所需能量相同。 (2)辐射与物质间有相互耦合作用(偶极距有变化)。 对称分子:没有偶极矩,辐 射不能引起共振,无红外活 性。如:N2、O2、Cl2 等。 非对称分子:有偶极矩,有 红外活性。
1.内部因素
(1)电子效应:引起化学键电子分布变化的效应。 a.诱导效应(Induction effect):取代基电负性-静电诱导-电 子分布改变-k 增加-特征频率增加(移向高波数)。 R-COR C=O 1715cm-1 ; R-COH C=O 1730cm-1 ; R-COCl C=O 1800cm-1 ; R-COF C=O 1920cm-1 。
基团所处化学环境不同,特征峰出现位置变化:
-CH2-CO-CH2- -CH2-CO-O- -CH2-CO-NH- 1715 cm-1 1735 cm-1 1680 cm-1 酮 酯 酰胺
21
相关峰:由同一基团的不同振动形式所产生的 一组应同时存在的峰。 如羧基的相关峰包括:羰基伸缩、羟基伸缩、
碳碳氢伸缩、羟基面内弯曲和羟基面外弯曲五个振
1650 cm-1 3400 cm-11650-1620
OCH 3 2835 cm-1
HO 3705-3125 cm-1
28
2.外部因素
1)物质状态及制样方法
通常,物质由固态向气态变化,其波数将增加因此在查阅 标准红外图谱时,应注意试样状态和制样方法。
正己酸在液态和气态的红外光谱 a 蒸气(134℃)b 液体(室温)
10
11
二、分子振动形式 1.双原子分子的振动
双原子分子的化学键的振动类似于连接两个小球的弹簧, 其振动类似于简谐振动。 (动画演示)
12
1 / cm 2c
1
1
k' 1307 Ar
k
k单位:dyn· cm-1;k’单位:N· cm-1,与键能和键长有关,
为双原子的原子质量折合质量: =m1· mቤተ መጻሕፍቲ ባይዱ /(m1+m2),
吸收峰强度偶极矩变化
吸收峰强度 偶极矩的平方
偶极矩变化——结构对称性;
对称性差偶极矩变化大吸收峰强度大
符号:s(强);m(中);w(弱)
红外吸收峰强度比紫外吸收峰小2~3个数量级;
20
第二节 IR的特征性及其与分子结构的 关系
一、基团频率和特征吸收峰
能代表基团存在、并有较高强度的吸收谱带--基团特 征频率,其所在的位置又称特征吸收峰。 例: 2800 3000 cm-1 -CH3 特征峰; 1600 1850 cm-1 C=O 特征峰;
17
理论上,多原子分子的振动数应与光谱峰数相同,
实际上,观察到的光谱峰数常常少于理论计算出的
振动数,这是因为:
a)偶极矩变化=0的振动,不产生红外吸收, 如
CO2对称伸缩振动;
b)谱线简并(振动形式虽然不同,但其振动频率 相同,发生合并); c)仪器分辨率或灵敏度不够,有些谱峰观察不到; d)有些吸收带落在仪器检测范围之外。
31
n3 n1 1 n4 2
=0 时,分子是饱和的,分子为链状烷烃或其不含双
键的衍生物;
=1 时,分子可能有一个双键或脂环; =2 时,分子可能有一个三键或两个双键; =4 时,分子可能有一个苯环。 注意:一些杂原子如S、O不参加计算。
例:计算C8H8、C3H6O的不饱合度。 3)查找基团频率,推测分子可能的基团;
Ar为双原子的原子量的折合质量:Ar =M1· M2 / M 1 + M 2
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
13
下表是某些键的伸缩力常数(mdyn/A=N/cm)
键类型 力常数 峰位
-C≡C - > -C=C - > -C - C - 15 17 9.5 9.9 4.5 5.6 4.5m 6.0 m 7.0 m
4)查找红外指纹区,进一步验证基团的相关峰;
5 )能过其它定性方法进一步确证: UV-Vis 、 MS 、 NMR 、 Raman光谱等。
32
未知物结构确定
structure determination of compounds
33
二、定量分析
红外光谱的谱带较多,选择余地大,所以能方便地对单一
N-O N-N C-F C=N
N-H
C-H,N-H,O-H 3500 3000 2500 2000 1500 1000 指纹区
25
500
特征区
三、影响基团频率的因素
基团频率(谱峰位置)主要由化学键的力常数决定。
但分子结构和外部环境因素也对其频率有一定的影响,相
同基团的特征吸收并不总在一个固定频率上。 影响其吸收峰位置的主要因素分为内部因素和外部因素。
29
2)溶剂效应 极性基团的伸缩振动频率通常随溶剂极性 增加而降低。如羧酸中的羰基C=O: 气态时: C=O=1780cm-1 非极性溶剂: C=O=1760cm-1 乙醚溶剂: C=O=1735cm-1 乙醇溶剂: C=O=1720cm-1 因此红外光谱通常需在非极性溶剂中测量。
30
第三节 红外光谱法的定性、定量方法
化学键键强越强(即键的力常数K越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
14
2. 多原子分子的振动
多原子分子的振动较为复杂(原子多、化学键多、空 间结构复杂),但可将其分解为多个简正振动来研究。 简正振动: 整个分子质心不变、整体不转动、各原子在原 地作简谐振动且频率及相位相同。此时分子中的任何振动 可视为所有上述简谐振动的线性组合。
指纹区包含了不含氢的单 键伸缩振动、各键的弯曲 振动及分子的骨架振动。 特点是振动频率相差不大, 振动偶合作用较强,易受 邻近基团的影响。分子结 构稍有不同,该区吸收就 有细微差别。
23
官能团区的划分
依据基团的振动形式,分为四个区: (1)4000 2500 cm-1 X-H伸缩振动区(X=O,N, 三键,累积双键伸缩振动区
18
二氧化碳的IR光谱




O=C=O

O=C=O

O=C=O
面内弯曲振动 667
O=C=O
面外弯曲振动 667
对称伸缩振动 反对称伸缩振动 不产生吸收峰 2349
因此O=C=O的 IR光谱只有2349 和 667/cm 二个吸收峰
19
三、 吸收谱带的强度
问题:C=O 强;C=C 弱;为什么?
9
如果一个分子的正负电荷的重心不重合,当 分子进行伸缩振动时,正负电荷重心的距离跟随 发生相应的变化,因此偶极矩也相应的伸长或者 收缩。 当一个红外光子作用于分子时,由于红外光 子的波长远远大于分子的体积,可以认为分子处 于均匀的电场中。在光子的频率与分子振动的频 率相同的条件下,也就是说光子的交变电场变化 频率与分子振动的频率相同时,以下情况可能发 生:
组分或多组分进行定量分析,并且该方法不受试样状态的 限制。但红外光谱法的灵敏度较低,尚不适于微量组分测 定。
定量分析的依据也是基于朗伯-比尔定律,通过对特征吸收
27
(2)氢键效应 形成氢键使电子云密度平均化(缔合态),使体系能量 下降,基团伸缩振动频率降低,其强度增加但峰形变宽。使 伸缩振动频率向低波数方向移动.
O R
H NH R
C=O 伸缩 N-H
游离 氢键
伸缩
N-H 变形
-1 -1 1690 cm 3500 cm 1620-1590
HN H O
H O O C H3C O-H 伸缩
光辐射→分子振动能级跃迁→红外光谱→官能团→分子结构
2
3
红外光区的划分及应用
红外光区位于0.8 ~ 1000 m 波长范围间 近红外区: 0.8~2.5m 中红外区: 2.5~50m 远红外区: 50~1000m
4
红外吸收光谱的特点
1、只有振-转跃迁,能量低 2、应用范围广 3、分子结构更为精细的表征 4、可以进行定量分析 5、样品不限形式,用量少,不破坏样品 6、分析速度快 7、可联用
一、定性分析
1. 已知物的鉴定
将试样谱图与标准谱图对照或与相关文献上的谱图对照。
2. 未知物结构分析 如果化合物不是新物质,可将其红外谱图与标准谱图对照;
如果化合物为新物质,则须进行光谱解析,其步骤为:
1 )该化合物的信息收集:试样来源、熔点、沸点、折光率、旋光 度等; 2)不饱和度的计算:
相关主题