霍尔效应实验报告
以下是小编给大家整理收集的霍尔效应实验报告,仅供参考。
霍尔效应实验报告1
实验内容:
1. 保持不变,使Im从0.50到4.50变化测量VH.
可以通过改变IS和磁场B的方向消除负效应。
在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即
+B,+I
VH=V1
—B,+
VH=-V2
—B,—I
VH=V3
+B,-I
VH=-V4
VH = (V1+V2+V3+V4)/4
0.50
1.60
1.00
3.20
1.50
4.79
2.00
6.90
2.50
7.98
3.00
9.55
3.50
11.17
4.00
12.73
4.50
14.34
画出线形拟合直线图:
Parameter Value Error
------------------------------------------------------------
A 0.11556 0.13364
B 3.16533 0.0475
------------------------------------------------------------ R SD N P
------------------------------------------------------------ 0.99921 0.18395 9 0.0001
2.保持IS=4.5mA ,测量Im—Vh关系
VH = (V1+V2+V3+V4)/4
1.60 0.100 3.20 0.150 4.79 0.200 6.90 0.250 7.98 0.300 9.55 0.350 11.06 0.400 1
2.69
14.31
Parameter Value Error
------------------------------------------------------------
A 0.13389 0.13855
B 31.5 0.49241
------------------------------------------------------------
R SD N P
------------------------------------------------------------
0.99915 0.19071 9 0.0001
基本满足线性要求。
2. 判断类型
经观察电流由A向A流,B穿过向时电势上低下高所以载流子是正电荷空穴导电。
4.计算RH,n,,
线圈参数=5200GS/A;d=0.50mm;b=4.0mm;L=3.0mm
取Im=0.450A;由线性拟合所得直线的斜率为3.165()。
;
B=Im*5200GS/A=2340T;有。
若取d的单位为cm;
磁场单位GS;电位差单位V;电流单位A;电量单位C;代入数值,得RH =6762cm3/C。
n=1/RHe=9.24E14/cm-3。
=0.0473(S/m);
=3.198(cm2/Vs)。
思考题:
1、若磁场不恰好与霍尔元件片底法线一致,对测量结果有何影响,如果用实验方法判断B与元件发现是否一致?
答:若磁场方向与法线不一致,载流子不但在上下方向受力,前后也受力(为洛仑兹力的两个分量);而我们把洛仑兹力上下方
向的分量当作合的洛仑兹力来算,导致测得的Vh比真实值小。
从而,RH偏小,n偏大;偏大;不受影响。
可测量前后两个面的电势差。
若不为零,则磁场方向与法线不一致。
2、能否用霍尔元件片测量交变磁场?
答:不能,电荷交替在上下面积累,不会形成固定的电势差,所以不可能测量交变的磁场。
霍尔效应实验报告2
一、实验名称: 霍尔效应原理及其应用
二、实验目的:
1、了解霍尔效应产生原理;
2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;
3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;
4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)
四、实验原理:
1、霍尔效应现象及物理解释
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹
力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材
料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
对于图1所示。
半导体样品,若在x方向通以电流,在z方向加磁场,则在y方向即样品A、A电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。
显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A间形成了稳定的电势差(霍尔电压) 。
设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:
(1-1)
因为,,又根据,则
(1-2)
其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。
只要测出、以及知道和,可按下式计算:
(1-3)
(1-4)
为霍尔元件灵敏度。
根据RH可进一步确定以下参数。